There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
type
HazMat fee
Excepted Quantity
Free
Inaccessible (Haz class 6.1), Domestic
USD 41.00
Inaccessible (Haz class 6.1), International
USD 64.00
Accessible (Haz class 3, 4, 5 or 8), Domestic
USD 83.00
Accessible (Haz class 3, 4, 5 or 8), International
USD 133.00
Structure of 127-17-3 * Storage: {[proInfo.prStorage]}
Reference:
[1] Angewandte Chemie - International Edition, 2004, vol. 43, # 34, p. 4526 - 4528
2
[ 77287-34-4 ]
[ 23147-58-2 ]
[ 1455-77-2 ]
[ 120-89-8 ]
[ 849585-22-4 ]
[ 73-40-5 ]
[ 110-15-6 ]
[ 120-73-0 ]
[ 144-62-7 ]
[ 113-00-8 ]
[ 127-17-3 ]
[ 57-13-6 ]
[ 302-72-7 ]
[ 18588-61-9 ]
Reference:
[1] Chemistry - A European Journal, 2018, vol. 24, # 32, p. 8126 - 8132
3
[ 290-37-9 ]
[ 127-17-3 ]
[ 22047-25-2 ]
Reference:
[1] Journal of Organic Chemistry, 1991, vol. 56, # 8, p. 2866 - 2869
4
[ 77287-34-4 ]
[ 156-81-0 ]
[ 849585-22-4 ]
[ 617-48-1 ]
[ 2491-15-8 ]
[ 110-15-6 ]
[ 108-53-2 ]
[ 71-30-7 ]
[ 113-00-8 ]
[ 127-17-3 ]
[ 66-22-8 ]
[ 66224-66-6 ]
[ 56-40-6 ]
[ 302-72-7 ]
[ 18514-52-8 ]
Yield
Reaction Conditions
Operation in experiment
0.18 mg
With ferric sulfate nonahydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
With copper(II) choride dihydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
Reference:
[1] Journal of Molecular Catalysis B: Enzymatic, 2013, vol. 94, p. 15 - 22
20
[ 328-42-7 ]
[ 338-69-2 ]
[ 1783-96-6 ]
[ 127-17-3 ]
Reference:
[1] Journal of Molecular Catalysis B: Enzymatic, 2013, vol. 94, p. 15 - 22
21
[ 127-17-3 ]
[ 1113-59-3 ]
Reference:
[1] Journal of Organic Chemistry, 1982, vol. 47, # 19, p. 3765 - 3766
[2] Journal of Medicinal Chemistry, 2006, vol. 49, # 2, p. 511 - 522
[3] Helvetica Chimica Acta, 1946, vol. 29, p. 415,431
[4] Journal of Biological Chemistry, 1946, vol. 164, p. 437
[5] Journal of the Chemical Society, 1923, vol. 123, p. 2208
[6] Synthesis, 2006, # 15, p. 2563 - 2567
22
[ 127-17-3 ]
[ 1113-59-3 ]
Reference:
[1] Patent: US4457936, 1984, A,
23
[ 123-54-6 ]
[ 1113-59-3 ]
[ 600-35-1 ]
[ 858451-26-0 ]
[ 64-19-7 ]
[ 127-17-3 ]
Reference:
[1] Indian Journal of Chemistry, Section A: Inorganic, Physical, Theoretical & Analytical, 1980, vol. 19, # 1, p. 1 - 6
24
[ 7732-18-5 ]
[ 7726-95-6 ]
[ 127-17-3 ]
[ 1113-59-3 ]
[ 600-35-1 ]
[ 858451-26-0 ]
Reference:
[1] Chemische Berichte, 1881, vol. 14, p. 1236 Anm. 1
[2] Bulletin de la Societe Chimique de France, 1874, vol. <2> 21, p. 391,393
[3] Chemische Berichte, 1868, vol. 1, p. 265[4] Justus Liebigs Annalen der Chemie, 1869, vol. 152, p. 264
25
[ 77287-34-4 ]
[ 2491-15-8 ]
[ 113-00-8 ]
[ 127-17-3 ]
[ 56-40-6 ]
Yield
Reaction Conditions
Operation in experiment
0.0034 mg
With iron(II) chloride tetrahydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
0.0052 mg
With zinc(II) chloride In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
With ferric sulfate nonahydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
B. N-(1S-Ethoxycarbonyl-3-phenylpropyl)-RS-alanine STR11 A mixture of S-(+)-2-amino-4-phenylbutyric acid, ethyl ester, hydrochloride (2.33 g, 8.94 mmole), pyruvic acid (1.76 g, 20 mmole), 5percent palladium-on-carbon (0.5 g), sodium hydroxide (0.6 g, 15 mmole, predissolved) and ethanol (200 ml) was shaken at 250° under a pressure of 40 psig (280 kPa, gauge) hydrogen in Parr shaker apparatus. The uptake of hydrogen was 18 psig (~18 mmole) over 23 hours. The catalyst was filtered through a bed of Celite and the filtrate was evaporated to leave an essentially quantitative yield of the desired product as a colorless solid. The crude sample was triturated with ether, filtered, and dried at 25°/0.1 mm (13 Pa) to provide 2.14 g (7.66 mmole, 86percent) of colorless solid, m.p. 132°-134°. The material prepared by this simple procedure contains entrained sodium chloride, but is satisfactory for further work. Anal. Calcd. for C15 H21 NO4 HCl: C, 57.05; H, 7.02; N, 4.14; Cl, 11.23. Found: 57.71, 57.79; H, 6.42, 6.94; N, 4.08, 4.44; Cl, 4.25.
Example 1a N-2-oxo-propanoyl-L-phenylalanine amide A suspension of HCl.H-Phe-NH2 (1.0 g, 4.98 mmol) in DCM (49 mL) was neutralized with Et3N (0.69 mL, 4.98 mmol) at 4° C. To this mixture were added HOBt.H2O (0.76 g, 4.98 mmol), pyruvic acid (0.52 mL, 7.47 mmol), and EDC.HCl (1.05 g, 5.47 mmol), and the mixture was stirred at 4° C. for 30 min and at room temperature for 2 h. After removal of the solvent in vacuo, the residue was dissolved in AcOEt, successively washed with 10percent citric acid, 5percent NaHCO3 and saturated NaCl for three times, dried over Na2SO4, and concentrated in vacuo to obtain 0.76 g (65percent) of the title compound as a white solid: mp 138-140° C.; 1H NMR (300 MHz, DMSO-d6) delta 8.34 (d, J=8.6 Hz, 1H), 7.52 (s, 1H), 7.24-7.19 (m, 6H), 4.45-4.37 (m, 1H), 3.11 (dd, J=4.2, 13.8 Hz, 1H), 2.96 (dd, J=9.5, 13.8 Hz, 1H), 2.26 (s, 3H); HRMS (EI): m/z 234.1008 (M+) (calcd for C12H14N2O3: 234.1004).
EXAMPLE 5 Synthesis of 2,2-bis(<strong>[491-34-9]1-methyl-1,2,3,4-tetrahydroquinoline</strong>-6-yl)propionic acid Into 6.0 ml of 6N--HCl solution was dissolved 4.2 g of <strong>[491-34-9]1-methyl-1,2,3,4-tetrahydroquinoline</strong>. To the solution was added 3 g of pyruvic acid and the mixture was heated with reflux for 20 hours. The reaction mixture was, after cooled, diluted with 100 ml of water and adjusted to pH 6 with addition of 20% aqueous solution of sodium hydroxide. The precipitated crystal was collected by filtration which was 4.0 g (yield 77%) of 2,2-bis(<strong>[491-34-9]1-methyl-1,2,3,4-tetrahydroquinoline</strong>-6-yl)propionic acid as light brown crystal, having a melting point of 155~157 C.
With 1,4-diaza-bicyclo[2.2.2]octane; palladium diacetate; In N,N-dimethyl-formamide; at 100℃; for 3h;Inert atmosphere;
To a solution of 1008 (3.0 g, 11.07 rnmoi) in DMF (40 ml) was added pyruvic acid (2.4 mL, 33.2 mrnol) and DABCO (3.7 mL, 33.2 nunol). Then the reaction mixture was degassed with argon for 10 miii and Pd(OAc)2 (246 mg) was added. After stirring the reaction mixture at 100C for 3 h, water (15 ml) was added to the reaction mixture and then extracted with EtOAc (2 x 30 mL). The combined organic layers were dried over anhydrous Na2SO4 andconcentrated under reduced pressure, The crude residue was purified h Comhit?Iash column chromatography (hexane/EtOAc, 1:2) to afford 1009 (1.0 g, 43%) as a solid. ?H NMR (300 MHz, DMSO-c4?): d 12.32 (s, IH), 7.31 (q, 2H), 7.12 (s, IH).
Pyruvic acid (1.9 ml, 0.027 mol) was added to avessel containing a suspension of Fmoc-NH-NH2 (6.9 g, 0.027 mol) in absoluteethanol (42 ml). The reaction mixture was stirred for 30 min and then pyruvicacid (0.2 equiv) was added. The mixture was shaken for 24 h at roomtemperature. Solvent was evaporated under reduced pressure and theproduct was triturated with MTBE, filtered, dried in vacuo and purified byrecrystallization from isopropyl alcohol. The yield was 7.2 g (82percent). 1H NMR(400 MHz, CDCl3, ppm): 2.06 (s, 3H), 4.28 (t, 1H, J = 5.9 Hz), 4.69 (d, 2H,J = 5.9 Hz), 7.34 (t, 2H, J = 7.42 Hz), 7.43 (t, 2H, J = 7.42 Hz), 7.59 (d, 2H,J = 7.54 Hz), 7.79 (d, 2H, J = 8 Hz), 8.17 (s, 1H). MS (ESI, m/z). Calcd forC18H16N2O4: 324.11; Found 347.1 [M+Na]+.
3-methyl-5-hydroxy-4-(4-methylphenyl)-2(5H)-furanone[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
59%
In water; at 80℃; for 24h;
General procedure: To a 25 mL round-bottom flask was added alpha-amino acids (10 mmol), alpha-keto acids (100 mmol), water (2.5 mL) respectively. The reaction was stirred at 80 oC for 24 h. After the solution was cooled to room temperature, the reaction mixture was then extracted with ethyl acetate. The organic layer was washed with water, brine, dried (Na2SO4), filtered, and then the solvent was removed under reduced pressure. The residue was subject to column chromatograph (petroleum ether/ ethyl acetate) to give the pure product.
5-methyl-6-nitro-1H-indole-2-carboxylic acid[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
7.67 g
With potassium phosphate; bis(eta3-allyl-mu-chloropalladium(II)); XPhos; In N,N-dimethyl-formamide; at 100℃; for 15.0h;Inert atmosphere;
2-Bromo-4-methyl-5-nitroaniline (10.0 g) was dissolved in N,N-dimethylformamide (173 mL), tripotassium phosphate (27.6 g), pyruvic acid (9.2 mL), X-Phos (6.2 g), and allylpalladium chloride dimer (1.6 g) were added, and the mixture was heated at 100C for 15 hours in a nitrogen atmosphere. The reaction solution was cooled to 25C, water (350 mL) and a saturated aqueous sodium bicarbonate solution (100 mL) were added, and the mixture was extracted with ethyl acetate (300 mL). 1 M hydrochloric acid was added to the aqueous layer and the precipitated solid was collected by filtration. The resulting crude solid was dissolved in ethyl acetate, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and concentrated under reduced pressure, and the resulting residue was washed with suspending in ethyl acetate/hexane to give the target compound (7.67 g).
6-chloro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
With palladium diacetate; triethylamine;
Example 84 Synthesis of 6-chloro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid. A mixture of <strong>[78607-32-6]2,5-dichloropyridin-3-amine</strong> (2.0 g, 12.27 mmol), 2-oxopropanoic acid (3.24 g, 36.81 mmol), Pd(OAc)2 (551 mg, 2.45 mmol), PPh3 (2.57 g, 9.82 mmol) and Et3N (4.97 g, 49.08 mmol) in DMF (30 mL) was stirred at 100 C. for 16 h. The reaction mixture was concentrated to give a crude which was purified by silica gel chromatography (DCM/MeOH=5/1) to give 6-chloro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid (2.41 g, yield: 100%) as a yellow solid. ESI-MS [M+H]+: 197.0.
With lithium hydroxide; In water; at 180℃; under 7500.75 Torr; for 2h;Inert atmosphere;
For this example, neither the tungstate or the commercial ruthenium on carbon catalyst were used, and nitrogen was again used in place of hydrogen, except at a pressure of 1.0 MPa (150 psi). Full conversion of the substrate was experienced, with products including 1.29 weight percent of lactic acid (3.4 mol percent yield) of lactic acid, 4.8 weight percent of pyruvic acid (13.11 mol percent yield), and 0.3 weight percent of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA)(4.7 mol percent yield) but no observable glycerol, ethylene glycol or propylene glycol