Structure of 5438-07-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 5438-07-3 |
Formula : | C10H13NO2 |
M.W : | 179.22 |
SMILES Code : | CCC(C1=CC=CC=C1)(N)C(O)=O |
MDL No. : | MFCD00038162 |
InChI Key : | UBXUDSPYIGPGGP-UHFFFAOYSA-N |
Pubchem ID : | 89317 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 13 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.3 |
Num. rotatable bonds | 3 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 50.19 |
TPSA ? Topological Polar Surface Area: Calculated from |
63.32 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.44 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
-0.99 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.23 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.81 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.06 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.39 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.47 |
Solubility | 60.6 mg/ml ; 0.338 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
0.15 |
Solubility | 251.0 mg/ml ; 1.4 mol/l |
Class? Solubility class: Log S scale |
Highly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.25 |
Solubility | 1.01 mg/ml ; 0.00561 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-8.1 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.67 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; hydrogen;palladium 10% on activated carbon; In methanol; water; under 2585.81 Torr; for 42h; | A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1 ,5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), IN HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over CELITE a^ concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H2O/TFA) to afford the TFA salt of Cap-164 as a white solid (1.7 g). 1H NMR (DMS0-d6, delta = 2.5 ppm, 500MHz) 7.54-7.47 (m, 5H), 2.63 (m, IH), 2.55 (s, 6H), 2.31 (m, IH), 0.95 (app t, J = 7.3 Hz5 3H). | |
With hydrogenchloride; hydrogen;palladium 10% on activated carbon; In methanol; water; under 2585.81 Torr; for 42h; | A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), IN HC1 (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to ¾ at 50 psi in a Parr bottle for 42 h. The reaction was filtered over Celite and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H20/TFA) to afford theTFA salt of Cap-164 as a white solid (1.7 g). ¾ NMR (DMSO-d6, delta = 2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, 1H), 2.55 (s, 6H), 2.31 (m, 1H), 0.95 (app t, J = 7.3 Hz, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), 1N HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over Celite and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H2O/TFA) to afford the TFA salt of Cap-164 as a white solid (1.7 g). 1H NMR (DMSO-d6, delta=2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, 1H), 2.55 (s, 6H), 2.31 (m, 1H), 0.95 (app t, J=7.3 Hz, 3H). | ||
A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 ramol) , formaldehyde (14 mL, 37% in water) , IN HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over CeI ite and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H2O/TFA) to afford the TFA salt of Cap-164 as a white solid (1.7 g) . 1H NMR (DMSO-ds, delta = 2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, IH), 2.55 (s, 6H), 2.31 (m, IH) , 0.95 (app t, J = 7.3 Hz, 3H) . | ||
A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), IN HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over CELITE and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H20/TFA) to afford the TFA salt of Cap- 164 as a white solid (1.7 g). 1H NMR (DMSO-d6, delta = 2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, 1H), 2.55 (s, 6H), 2.31 (m, 1H), 0.95 (app t, J = 7.3 Hz, 3H). |
[00262] A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), IN HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to ¾ at 50 psi in a Parr bottle for 42 h. The reaction was filtered over CELITE and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H20/TFA) to afford the TFA salt of Cap- 164 as a white solid (1.7 g). XH NMR (DMSO-d6, delta = 2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, 1H), 2.55 (s, 6H), 2.31 (m, 1H), 0.95 (app t, J = 7.3 Hz, 3H). | ||
A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde (14 mL, 37% in water), 1N HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over Celite and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/H2O/TFA) to afford the TFA salt of Cap-164 as a white solid (1.7 g). 1H NMR (DMSO-d6, delta=2.5 ppm, 500 MHz) 7.54-7.47 (m, 5H), 2.63 (m, 1H), 2.55 (s, 6H), 2.31 (m, 1H), 0.95 (app t, J=7.3 Hz, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
A mixture of <strong>[5438-07-3]2-amino-2-phenylbutyric acid</strong> (1.5 g, 8.4 mmol), formaldehyde(14 mL, 37% in water), IN HCl (10 mL) and 10% Pd/C (0.5 mg) in MeOH (40 mL) was exposed to H2 at 50 psi in a Parr bottle for 42 h. The reaction was filtered over CELITE and concentrated in vacuo, the residue was taken up in MeOH (36 mL) and the product was purified with a reverse phase HPLC (MeOH/^O/TFA) to afford the TFA salt of Cap-164 as a white solid (1.7 g). 3H NMR (DMSO-d6, delta - 2.5 ppm, 500MHz) 7.54-7.47 (m, 5H), 2.63 (m, IH), 2.55 (s, 6H), 2.31 (m, IH)5 0.95 (app t, J = 7.3 Hz, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With chiral stationary phase including isopropyl-functionalized CF6; In methanol; acetic acid; triethylamine; acetonitrile; at 20℃;Purification / work up; | In addition to the foregoing, numerous other chromatographic separations using a column bonded with a CSP including a derivatized cyclofructan residue were carried out. Tables 5-9 list some additional examples of chromatographic separations using a column bonded with a CSP of the present invention. AU examples of chromatographic separations using columns bonded with CSPs of the present invention were carried out using the following experimental conditions and procedures.|0132| The high performance liquid chromatography (HPLC) column packing system was composed of an air driven fluid pump (HASKEL, DSTV- 122), an air compressor, a pressure regulator, a low pressure gauge, two high-pressure gauges (10,000 and 6,000 psi), a slurry chamber, check valves, and tubings. The CSPs were slurry packed into a 25 cm x 0.46 cm (inner diameter, I. D.) stainless steel column.|0133| The HPLC system was an Agilent 1 100 system (Agilent Technologies, Palo Alto,CA), which consisted of a diode array detector, an autosampler, a binary pump, a temperature- controlled column chamber, and Chemstation software. All chiral analytes were dissolved in ethanol, methanol, or other appropriate mobile phases, as indicated. For the LC analysis, the injection volume and flow rate were 5 muL and 1 mL/min, respectively. Separations were carried out at room temperature (~20 0C) if not specified otherwise. The wavelengths of UV detection were 195, 200, 210, and 254 nm. The mobile phase was degassed by ultrasonication under vacuum for 5 min. Each sample was analyzed in duplicate. Three operation modes (the normal phase mode, polar organic mode, and reversed phase mode) were tested, unless indicated otherwise. In the normal phase mode, heptane with ethanol or isopropanol was used as the mobile phase. In some cases, trifluoroacetic acid (TFA) was used as an additive, as indicated. The mobile phase of the polar organic mode was composed of acetonitrile/methanol and small amounts of acetic acid and triethylamine. Water/acetonitrile or acetonitrile/acetate buffer (20 mM, pH = 4.1 ) was used as the mobile phase in the reversed-phase mode.|0134| Two different supercritical fluid chromatographic instruments were used. One was a Berger SFC unit with an FCM 1200 flow control module, a TCM 2100 thermal column module, a dual pump control module, and a column selection valve. The flow rate was 4 mL/min. The cosolvent was composed of methanol/ethanol/isopropanol = 1 : 1 : 1 and 0.2% diethylamine (DEA). The gradient mobile phase composition was 5% cosolvent hold during 0- 0.6 min, 5-60% during 0.6-4.3 min, 60% hold during 4.3-6.3 min, 60%-5% during 6.3-6.9 min, and 5% hold during 6.9-8.0 min. The other SFC system was a Jasco (MD, USA) system comprised of an autosampler unit (AS-2059-SF Plus), a dual pump module (PU-2086 Plus), a column thermostat module (CO-2060 Plus), a UV/Vis detector (UV-2075 Plus), and a back pressure regulator module (SCH-Vch-BP). Unless otherwise specified, the mobile phase was composed of CCVmethanol (0.1 % TFA or 0.1% diethylamine). The flow rate was 3 mL/min.|0135| For the calculations of chromatographic data, the "dead time" to was determined by the peak of the refractive index change due to the sample solvent or determined by injecting l ,3,5-tri-/e/-/-butylbenzene in the normal phase mode. |