There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Glyoxylic Acid participates in phenylalanine metabolism and the glyoxylate cycle, playing a crucial role as an intermediate in metabolic pathways and potentially involved in antioxidant stress responses in certain plants and microorganisms.
Synonyms: Glyoxalic acid; NSC 27785; Oxalaldehydic acid
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Electrocatalytic valorization of biomass derived platform chemical 5-hydroxymethylfurfural
Huddleston, Morgan ;
Abstract: Electrocatalytic valorization of biomass-derived intermediate compounds to value-added products has emerged as a promising approach to mitigate carbon emissions. Capitalizing on renewable electricity as a green energy input for conducting paired electrocatalysis is a promising approach in the field of biorefining. Simultaneous oxidation and reduction of 5-hydroxymethylfurfural (HMF) yields high value products such as 2,5-formylfurancarboxylic acid (FFCA) and 2,5-bishydroxymethylfurfural (BHMF) with applications in the food industry, fuel additives, and pharmaceuticals. Simultaneous upgrading of biomass derived 5-hydroxymethylfurfural (HMF) at both the anode and cathode has been previously explored, however the challenge of tunable selectivity has not been overcome. Traditional electrochemical methods often suffer from energy inefficiencies due to the need for a second conversion at the counter electrode, which can produce non-value-added byproducts. Amino acids are a key example of highly valuable products derived from biomass oxidation followed by reductive amination. Pharmaceutical and food industries will benefit from an alternative strategy to produce amino acids that does not rely on inefficient fermentation processes. The use of renewable biomass resources as starting materials makes this proposed strategy more desirable. HMF can be proven to selectively yield 5-formyl-2-furancarboxylic acid (FFCA) under the same electrochemical conditions as HMF hydrogenation to 2,5-bishydroxymethylfuran (BHMF). With 4-acetamido TEMPO (ACT) as a homogeneous oxidation mediator and silver galvanically displaced copper foam (Ag/Cu) as the cathodic electrocatalyst, both electrochemical conversions can be observed in an H-type cell simultaneously. By employing pH 10 carbonate buffer as the optimized electrolyte, water proves to be an effective proton source for both conversion which demonstrates the extremely mild conditions. HMF anodic conversion of 94% leads to FFCA formation of 83% yield and simultaneous HMF cathodic conversion of 100% yields BHMF at 99%. HMF also oxidizes to 2,5-diformylfuran (DFF) with 75% yield and subsequent amination with ammonium hydroxide followed by reductive hydrogenation yields 2,5-(dimethylamino) furan (DMAF). This paired electrochemical approach for the selective oxidation of biomass-derived α-hydroxyl acids to α-keto acids, followed by electrochemical reductive amination yield amino acids as the final products. Glycine, Alanine, and Leucine were synthesized with N-hydroxyphthalimide (NHPI) as the oxidation mediator and NH3 as the nitrogen source to yields of 70, 80, and 90%. Phenylalanine required tetramethylpiperidine Noxyl (TEMPO) oxidation mediator with applying the same 2.7 V yielded 100%. Our paired electrolysis improves selectivity and doubles electron efficiency, with the flow electrolyzer demonstrating its potential for large-scale applications. The main challenge for widespread use of our proposed paired electrocatalytic method is the cost of industrial-scale small molecule production. Paired electrocatalysis offers an alternative by using both half-reactions in an electrochemical cell to produce value-added chemicals from biomass feedstocks. The operational principles and benefits of various cell configurations are compared, along with an analysis of electrocatalysts. Heterogeneous and bifunctional catalysts in paired electrocatalysis optimize energy and chemical use, eliminating the need for purification. The future will require further optimization to enhance the benefits of biomass valorization through paired electrocatalysis, while addressing challenges like cost of precursors, large-scale facility expenses, and widespread adoption of sustainably sourced energy.
Show More >
Electrosynthesis of amino acids from biomass-derived α-hydroxyl acids
Kaili Yan ; Morgan L. Huddleston ; Brett A. Gerdes ; Yujie Sun ;
Abstract: Electrochemical conversion of biomass-derived intermediate compounds to high-value products has emerged as a promising approach in the field of biorefinery. Biomass upgrading allows for the production of chemicals from non-fossil-based carbon sources and capitalization on electricity as a green energy input. Amino acids, as products of biomass upgrading, have received relatively little attention. Pharmaceutical and food industries will benefit from an alternative strategy for the production of amino acids that does not rely on inefficient fermentation processes. The use of renewable biomass resources as starting materials makes this proposed strategy more desirable. Herein, we report an electrochemical approach for the selective oxidation of biomass-derived α-hydroxyl acids to α-keto acids, followed by electrochemical reductive amination to yield amino acids as the final products. Such a strategy takes advantage of both reactions at the anode and cathode and produces amino acids under ambient conditions with high energy efficiency. A flow electrolyzer was also successfully employed for the conversion of α-hydroxyl acids to amino acids, highlighting its great potential for large-scale application.
Show More >
CAS No. : | 298-12-4 |
Formula : | C2H2O3 |
M.W : | 74.04 |
SMILES Code : | OC(=O)C=O |
Synonyms : |
Glyoxalic acid; NSC 27785; Oxalaldehydic acid
|
MDL No. : | MFCD00006958 |
InChI Key : | HHLFWLYXYJOTON-UHFFFAOYSA-N |
Pubchem ID : | 760 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H314-H317-H402-H290 |
Precautionary Statements: | P501-P261-P273-P272-P234-P264-P280-P390-P362+P364-P303+P361+P353-P333+P313-P301+P330+P331-P304+P340+P310-P305+P351+P338+P310-P406-P405 |
Class: | 8 |
UN#: | 3265 |
Packing Group: | Ⅲ |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
25% | In N,N-dimethyl-formamide; acetonitrile; at 85℃; for 0.5h; | A mixture of 2-chloro-5-methoxyhenylboronic acid (43 mg, 0.23 mmol), Intermediate 1 (72 mg, 0.2 mmol) and glyoxylic acid monohydrate (21 mg, 0.23 mmol) in acetonitrile (0.7 mL) and DMF (0.07 mL) was heated at 85° C. for 30 min in a Microwave Reactor. The crude product was purified by flash column chromatography (CH2Cl2:MeOH=100:15) to give 28 mg (25percent) of 77A as a solid. 1H NMR (400 MHz, Methanol-d4) delta ppm 1.16 (s, 18 H) 3.24 (s, 3 H) 5.55 (s, 1 H) 6.57 (d, J=2.20 Hz, 1 H) 6.75-6.84 (m, 2 H) 7.00 (d, J=3.08 Hz, 1 H) 7.10-7.20 (m, 1 H) 7.27 (d, J=9.23 Hz, 1 H) 7.32 (d, J=5.27 Hz, 1 H) 7.54 (d, J=9.23 Hz, 1 H) 7.93 (d, J=6.15 Hz, 1 H); LC MS 558 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
71.6% | In N,N-dimethyl-formamide; acetonitrile; at 100℃; for 0.166667h;Microwave irradiation; | Example 4: (/?)-4-Methyl-2-(l-oxo-l,2,3,4-tetrahydro-isoquinolin-7-ylamino)-7- (propane-2-sulfonyl)-4,ll-diaza-tricyclo[14.2.2.1^'1"]henicosa- l(19),6,8,10(21),16(20),17-hexaene-3,12-dione trifluoroacetic acid salt; Intermediate 1 (128 mg, 0.789 mmol),3G (400 mg, 0.751 mmol), and glyoxylic acid monohydrate (69.2 mg, 0.751 mmol) were dissolved in acetonitrile (2.25 mL) and DMF (1.75 mL) to give a yellow solution. The mixture was irradiated in a microwave reactor at 100 0C for 10 min, then was concentrated. The crude product was purified by flash chromatography (1 to 20% MeOH/CH2Cl2 gradient) to afford 380 mg (71.6 %) of 4A as a yellow glass. (ESI) m/z 707 '.2 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
46% | With N,N-dimethyl-formamide; In acetonitrile; at 100℃; for 0.333333h;Microwave irradiation; | A mixture of <strong>[518057-72-2]3-amino-6-fluorobenzamide</strong> (85 mg, 0.5 mmol), 3,4-dimethoxyphenylboronic acid (91 mg, 0.5 mmol) and glyoxylic acid monohydrate (46 mg, 0.5 mmol) in acetonitrile (2.0 mL) and DMF (0.2 mL) was heated at 100 C. for 20 min. in a microwave reactor. After removal of solvent, the crude was triturated with methylene chloride. The precipitate formed was collected by filtration and washed with methylene chloride to give 13A after drying, yield: 46%. 1H NMR (400 MHz, Methanol-d4) delta ppm 3.81 (s, 3H) 3.82 (s, 3H) 4.92 (s, 1H) 6.83-6.89 (m, 1H) 6.93 (d, J=8.35 Hz, 1H) 6.96-7.02 (m, 1H) 7.03-7.07 (m, 1H) 7.10 (d, J=1.76 Hz, 1H) 7.15 (dd, J=5.93, 2.86 Hz, 1H), LCMS: 349 (M+1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87% | With sodium hydroxide; In water; at 20℃; | <strong>[72955-97-6]2-methoxy-5-fluorophenol</strong> (14.2 g of) and 50% glyoxylic acid (16.8 g of) was added to (100ml) distilled water,Under ice bath, a solution of 10% sodium hydroxide (16 g) was added dropwise slowly.During the dropwise addition, the color of the reaction liquid gradually deepened. After overnight reaction at room temperature,The reaction was confirmed by TLC, and the reaction solution was extracted with ethyl acetate.The aqueous phase was adjusted to pH 1-2 with concentrated hydrochloric acid, extracted with ethyl acetate,The second ethyl acetate extract was dried over anhydrous magnesium sulfate and dried under reduced pressure to give 18.8 g of a yellow oil which was used in the next step with a yield of 87.0% |
86% | With sodium hydroxide; In water; at 0 - 20℃; | General procedure: A 10% sodium hydroxide solution (300 ml) was added slowly to the rapidly stirring solution of the appropriate phenol (4a-g) (0.4 mol), 50% glyoxylic acid (0.396 mol) and 100-ml distilled water at 0 C. The reaction mixture was stirred at room temperature overnight and washed three times with ethyl acetate. The aqueous phase was adjusted to pH 3 using concentrated hydrochloric acid and extracted three times using ethyl acetate. The combined organic phases were evaporated under reduced pressure to obtain the final products. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
78.8% | <strong>[6972-82-3]5,6-diamino-1-methyluracil</strong> (10g, 64.1mmol) (Synthesis of <strong>[6972-82-3]5,6-diamino-1-methyluracil</strong>, see J. Med. Chem. 2009, 52, 6433-6446) was added to 30 mL of water,Hydroxy acetic acid (4. 87 g, 128.2 mmol) was added,100 ° C Reaction 3. After 5 hours,Sodium hydroxide (4. 3 g, 107.5 mmol) was added and the reaction was carried out at 100 ° C for 5 hours.The solid precipitated to room temperature, filtered and the cake was recrystallized from water to give 6.2 g of a 78.8percent |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With hydroxyapatite; In water; at 52℃; for 6h; | 200 mesh hydroxyapatite powder, 0.008g as catalystUse 52 mL of hot water as solvent,The reaction was carried out with 0.1 mol o-phenylenediamine and 0.11 mol glyoxylic acid as raw materials. The reaction time was 6 hours and the reaction temperature was 52°C.After the reaction is over,Hot filter,Cool the filtrate to 2 °CWhite crystals precipitated,Filtered to obtain crystals,35 °C vacuum drying overnight,That is, benzimidazole-2-formaldehyde 11.9g, yield 81percent,Purity 99.6percent, |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
64% | With hydrogenchloride; In water; acetic acid; for 18h;Reflux; | General procedure: Acetophenone (30 mmol, 1 equiv) and glyoxylic acid monohydrate (45 mmol, 1.5 equiv) were added in sequence to a solution of concentrated HCl (5 mL) in AcOH (100 mL). The mixture was heated to reflux for 18 h. After the reaction was complete as monitored by TLC, the mixture was cooled to the ambient temperature, and dried under vacuum. The crude materialwas then purified by column chromatography to afford pure benzoylacrylic acid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In water; at 100℃; for 24h; | [0298] Step 1: 4-(2-Bromophenyl)-5-hydroxy-5-methylfuran-2(5H)-one . 1-(2- Bromophenyl)-2-propanone (5.18 mL, 24.31 mmol, AstaTech Inc., Bristol, PA) was treated with glyoxalic acid (50 wt% in water, 4.0 mL, 36.5 mmol). The flask was fitted with a reflux condenser and heated to 100 C for 24 h. The reaction mixture was concentrated, azeotroped with toluene, and used in the subsequent step without further purification. m/z (ESI, +ve ion): 269.0 (M+H)+. |
Tags: 298-12-4 synthesis path| 298-12-4 SDS| 298-12-4 COA| 298-12-4 purity| 298-12-4 application| 298-12-4 NMR| 298-12-4 COA| 298-12-4 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL