Structure of 104-88-1
*Storage:
*Shipping:
4.5
*For Research Use Only !
Change View
Size | Price | US Stock | Global Stock | In Stock |
25g | łÇÿ¶ÊÊ | Inquiry | Inquiry | |
100g | łËÿ¶ÊÊ | Inquiry | Inquiry | |
500g | łòò¶ÊÊ | Inquiry | Inquiry |
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
łÇÿ¶ÊÊ
łËÿ¶ÊÊ
łòò¶ÊÊ
In Stock
- +
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Buhlak, Shafeek ; Abad, Nadeem ; Akachar, Jihane ; Saffour, Sana ; Kesgun, Yunus ; Dik, Sevval , et al.
Abstract: Background/Objectives: Glioblastoma multiforme (GBM), an aggressive and deadly brain tumour, presents significant challenges in achieving effective treatment due to its resistance to current therapies and poor prognosis. This study aimed to synthesise and evaluate 23 novel analogues of 3,4-dihydroquinolin-2(1H)-one, designed to enhance druggability and solubility, and to investigate their potential as VEGFR2 inhibitors for GBM treatment. Methods: The synthesised compounds were analysed using in silico methods, including molecular docking and dynamics studies, to assess their interactions with key residues within the VEGFR2 binding pocket. In vitro evaluations were performed on U87-MG and U138-MG GBM cell lines using MTT assays to determine the IC50 values of the compounds. Results: Among the tested compounds, 4u (IC50 = 7.96 µM), 4t (IC50 = 10.48 µM), 4m (IC50 = 4.20 µM), and 4q (IC50 = 8.00 µM) demonstrated significant antiproliferative effects against both the U87-MG and U138-MG cell lines. These compounds exhibited markedly higher efficacy compared to temozolomide (TMZ), which showed IC50 values of 92.90 µM and 93.09 µM for U87-MG and U138-MG, respectively. Molecular docking and dynamics studies confirmed strong interactions between the compounds and VEGFR2 kinase, supporting their substantial anti-cancer activity. Conclusions: This study highlights the promising potential of 3,4-dihydroquinolin-2(1H)-one analogues, particularly 4m, 4q, 4t, and 4u, as VEGFR2-targeting therapeutic agents for GBM treatment. Further detailed research is warranted to validate and expand upon these findings.
Show More >
Keywords: glioblastoma multiforme ; 3,4-dihydroquinolin-2(1H)-one ; therapeutic efficacy ; molecular docking ; molecular dynamics ; VEGFA–VEGFR2 pathway ; anti-cancer
Show More >
Purchased from AmBeed: 613-45-6 ; 98-03-3 ; 54197-66-9 ; 104-88-1
Show More >
Almeida, Ana RRP ; Pinheiro, Bruno DA ; León, Gastón P ; Postolnyi, Bogdan ; Araújo, João P ; Monte, Manuel JS
Abstract: Halogenated benzaldehydes possess unique chemical properties that render them valuable in pharmaceutical synthesis, pesticide formulation, and dye production. However, thorough thermodynamic data for these compounds remain scarce. This study aims to fill this knowledge gap by investigating key physical properties of several halogenated benzaldehydes, namely 4-chlorobenzaldehyde, 4-bromobenzaldehyde, 2,3-dichlorobenzaldehyde, 2,4-dichlorobenzaldehyde, and 2,6-dichlorobenzaldehyde. The physical properties determined in this study include volatility, phase transitions, and water solubility, all of which are crucial for predicting the environmental fate of these compounds. The vapor pressures of both crystalline and liquid phases were measured using a reliable static method, allowing for the determination of standard molar enthalpies, entropies, and Gibbs energies of sublimation and vaporization, as well as their triple points. The melting temperature and molar enthalpy, along with the isobaric molar heat capacity of the crystalline phase, were assessed using differential scanning calorimetry. Water solubility was evaluated at 25◦C through the saturation shake-flask method, complemented by ultra-violet visible spectroscopy. By combining sublimation and solubility data, additional properties such as Gibbs energies of hydration and Henry's law constants were derived. The experimental results were integrated into existing databases, enhancing the predictive models for properties including melting temperature, vapor pressure, solubility, Gibbs energy of hydration, and Henry's constant. These findings significantly improve the environmental modeling capabilities, providing valuable insights into the mobility and fate of halogenated benzaldehydes in various environmental contexts.
Show More >
Keywords: 4-chlorobenzaldehyde ; 4-bromobenzaldehyde ; 2,3-dichlorobenzaldehyde ; 2,4-dichlorobenzaldehyde ; 2,6-dichlorobenzaldehyde ; volatility ; phase transitions ; solubility
Show More >
Purchased from AmBeed: 104-88-1
Show More >
Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents
Agarwal, Devesh S. ; Beteck, Richard M. ; Ilbeigi, Kayhan ; Caljon, Guy ; Legoabe, Lesetja J. ;
Abstract: A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1H NMR,13C NMR and HRMS. The synthesized analogs were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogs were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, (E)-N-(4-(3-(2-chlorophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 μM, resp. Against T. b. rhodesiense, (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active with an IC50 value of 1.13 μM. All synthesized active analogs were found to be non-cytotoxic against MRC-5 and PMM with selectivity indexes of up to more than 50.
Show More >
Keywords: antikinetoplastid ; chalcone ; drug likeliness properties ; imidazo[1,2-a]pyridine ; neglected tropical diseases (NTDs) ; Trypanosoma brucei brucei ; Trypanosoma brucei rhodesiense
Show More >
Are β-Lactones Involved in Carbon-Based Olefination Reactions?
Jan Nowak ; Michał Tryniszewski ; Michał Barbasiewicz ;
Abstract: Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.
Show More >
Keywords: olefination ; carbonyl compounds ; reaction mechanism ; lactones ; malonates ; Knoevenagel ; Doebner reaction
Show More >
Nitrothiazole-Thiazolidinone Hybrids: Synthesis and in Vitro Antimicrobial Evaluation
Dylan Hart ; Lesetja J. Legoabe ; Omobolanle J. Jesumoroti ; Audrey Jordaan ; Digby F. Warner ; Rebecca Steventon , et al.
Abstract: Herein we report the synthesis of novel compounds inspired by the antimicrobial activities of nitroazole and thiazolidin-4-one based compounds reported in the literature. Target compounds were investigated in vitro for antitubercular, antibacterial, antifungal, and overt cell toxicity properties. All compounds exhibited potent antitubercular activity. Most compounds exhibited low micromolar activity against S. aureus and C. albicans with no overt cell toxicity against HEK-293 cells nor haemolysis against human red blood cells. Notably, compound 3b exhibited low to sub-micromolar activities against Mtb, MRSA, and C. albicans. 3b showed superior activity (0.25 μg/ml) against MRSA compared to vancomycin (1 μg/ml).
Show More >
CAS No. : | 104-88-1 |
Formula : | C7H5ClO |
M.W : | 140.57 |
SMILES Code : | O=CC1=CC=C(Cl)C=C1 |
MDL No. : | MFCD00003379 |
InChI Key : | AVPYQKSLYISFPO-UHFFFAOYSA-N |
Pubchem ID : | 7726 |
GHS Pictogram: | ![]() ![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H303-H312-H318-H411 |
Precautionary Statements: | P273-P280-P302+P352+P312-P305+P351+P338+P310-P312-P362+P364-P391-P501 |
Class: | 9 |
UN#: | 3077 |
Packing Group: | Ⅲ |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 36.84 |
TPSA ? Topological Polar Surface Area: Calculated from | 17.07 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from | 1.6 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by | 2.1 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from | 2.15 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from | 2.05 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by | 2.64 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions | 2.11 |
Log S (ESOL):? ESOL: Topological method implemented from | -2.46 |
Solubility | 0.485 mg/ml ; 0.00345 mol/l |
Class? Solubility class: Log S scale | Soluble |
Log S (Ali)? Ali: Topological method implemented from | -2.09 |
Solubility | 1.15 mg/ml ; 0.00815 mol/l |
Class? Solubility class: Log S scale | Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by | -2.94 |
Solubility | 0.163 mg/ml ; 0.00116 mol/l |
Class? Solubility class: Log S scale | Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg | High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg | Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) | No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) | Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) | No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) | No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) | No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) | No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from | -5.67 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from | 0.0 |
Ghose? Ghose filter: implemented from | None |
Veber? Veber (GSK) filter: implemented from | 0.0 |
Egan? Egan (Pharmacia) filter: implemented from | 0.0 |
Muegge? Muegge (Bayer) filter: implemented from | 2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat | 0.55 |
PAINS? Pan Assay Interference Structures: implemented from | 0.0 alert |
Brenk? Structural Alert: implemented from | 1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from | No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) | 1.0 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84% | With ammonium acetate In neat (no solvent) at 55℃; for 3 h; Green chemistry | General procedure: Polyhydroquinolines and DihydropyridinesA mixture of aldehyde (1 mmol), β-dicarbonyl compound (1or 2 mmol), NH4OAc (2.5 mmol), dimedone (1 mmol, whenused), and SBA-15/NHSO3H (5 molpercent) was stirred at 55 °C.After complete disappearance of starting material asindicated by TLC, the resulting mixture was diluted with hotEtOAc (10 mL) and filtered. The catalyst was completelyrecovered from the residue |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96% | With iron supported on copper/Zeolite Socony Mobil-5 nanocatalyst In water at 20℃; Sonication | General procedure: In a typical experiment, aromatic aldehyde (1 mmol), bketoester(2 mmol), ammonium acetate (1 mmol), and Fe-Cu/ZSM-5 (3 wtpercent) in 2 ml water were introduced in a 20-mL heavy-walled pear-shaped two-necked flask with nonstandard-tapered outer joint. The flask was attached to a12-mm tip diameter probe, and the reaction mixture was sonicated at ambient temperature at 20 percent power of the processor. After completion of the reaction (monitored byTLC, within 5–8 min), the solid product was filtered,washed with water and ethanol, dried, and recrystallized from ethanol. The supported reagent was washed thrice with water and ethanol and dried under vacuum before reuse. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | at 80℃; for 0.3 h; | General procedure: A mixture of the alkyl or aryl aldehyde (1 mmol), -dicarbonyl(2 mmol) and ammonium acetate (1.5 mmol) in the presence ofFe3O4NPs (0.024 g, equal to 10 molpercent) was heated at 80C, withstirring. The progress of the reaction was monitored by TLC (elu-ent: EtOAc:n-hexane). After completion of the reaction, the mixturewas cooled to room temperature and then ethanol was added tothe resulting mixture and separated Fe3O4NPs by a normal mag-net. After evaporation of solvent, the solid product was filtered andrecrystallized from ethanol to give the pure products in 72–95percentyields based on the starting aldehyde. |
95% | With C23H3BF16N2O; ammonium acetate In toluene at 100℃; for 10 h; | In a 100 mL single-necked flask, 0.01 molpercent of Lewis acid-base bifunctional catalyst I was added (where Rf = CF3R1,R2, R3, R4, R5, R6 = F), 0.1 mol of p-chlorobenzaldehyde (R7 = 4-Cl-Ph), 0.1 mol of methyl acetoacetate (R8 = Me;Me), 0.1 mol of ammonium acetate, 10 mL of toluene, and the reaction was stirred at 100 ° C for 10 hours. TLC followed the reaction to complete the reaction. anti-The yield of the product II (R7 = 4-Cl-Ph; R8 = Me; R9 = Me) was 95percent; the catalyst system was reused 10 timesAfter its catalytic performance did not decline |
94% | for 2.25 h; Heating; Green chemistry | General procedure: A mixture of aldehyde 1 (1 mmol), 1,3-dicarbonyl compound 2 (2 mmol), and nitrogen source 3 (3 mmol) were mixed and heated in the presence of a low-melting sugar mixture.The progress of the reaction was monitored by thin-layer chromatography (TLC) using n-hexane–ethyl acetate (7:3) as the solvent system. The Rf values of the product spots ranged from 0.5 to 0.6. After completion of the reaction, water was added to the reaction mixture to obtain the solid product as a precipitate. In cases where the product was obtained as a melt, several washings with water followed by bicarbonate solution gave crystalline products. The solids were filtered and washed with cold water. In most of the cases, the product obtained was pure, and when impure, the product was recrystallized from hot ethanol. Further two products were obtained as oils (Table 5, entries 4w and 4x). These products were extracted with ethyl acetate and dried over anhydrous Na2SO4. Evaporation of the solvent gave the pure product as an oil. |
91% | at 100℃; for 0.25 h; Green chemistry | General procedure: To a glassy reactor equipped with a magnetic stir bar, amixture of aromatic aldehyde (1.0 mmol), β-keto ester(2 mmol), ammonium acetate (1.5 mmol) and n-Fe3O4(at)ZrO2/HPW (0.003 g, 15 mol percent) was added. The reactorwas put in an oil bath with the temperature of 100 °C andthe reaction was carried out under solvent-free condition.The progress of the reaction was monitored using TLCplates. When the reaction was completed, the mixture wasallowed to cool to room temperature. Afterwards, the mixturewas triturated with 5mL ethyl acetate and the catalystwas separated by the help of an external magnet. Then thesolvent was evaporated and the crude product was recrystallizedfrom EtOH/H2O to offer the pure product. |
90% | With uranyl nitrate hexahydrate; ammonium acetate In ethanol at 20℃; for 0.416667 h; Sonication | General procedure: To a solution of aldehyde (1.0 mmol), ethyl/methyl acetoacetate/acetylacetone (2.0 mmol) and ammonium acetate (1.0 mmol) in ethanol (3 mL), uranyl nitrate (10 molpercent) was added and the resultant reaction mixture was sonicated at room temperature for the required time (Table 1). The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into crushed ice. The obtained solid was filtered, washed thoroughly with water, dried, and purified by recrystallisation in ethanol. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
16% | With sodium tris(acetoxy)borohydride; acetic acid; In dichloromethane; at 20℃; | Example 2) l-MethyI-lH-pyrazoIe-3-sulfonic acid (4-chloro-benzyl)-(2-ethyl-l- oxo-1 ,2,3,4-tetrahydro-isoquinolin-7-yl)-amide (METHOD B)i) 7-Benzylamino-3,4-dihydro-2H-isoquinolin-l-one Sodium triacetoxyborohydride (1.29 g, 6.16 mmol) was added to a stirred solution of 7-amino-3,4-dihydro-2H-isoquinolin-l-one (500 mg, 3.08 mmol), 4- chlorobenzaldehyde (431 mg, 3.0S mmol) and acetic acid (183 mul, 3.08 mmol) in anhydrous dichloromethane (25 ml) at room temperature. The reaction was stirred overnight and quenched with the addition of water. The organic phase was separated, washed with brine, then dried (MgSO4) and evaporated in vacuo. The resulting residue was purified by flash column chromatography (50% ethyl acetate in dichloromethane) to yield the title compound as a pale yellow solid (287 mg, 16%). HPLC retention time 4.09min. Mass spectrum (ES+) m/z 287 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
79% | With acetic acid; In ethanol; at 80℃; for 0.166667h;Microwave irradiation; | General procedure: A mixture of compound 2 (0.0549 g, 0.0003 mol), the appropriate aromatic aldehyde (0.00033 mol) and glacial acetic acid (0.1 mL) in ethanol (5 mL) was heated under microwave (20 W) at 80 °C for 10 min. On cooling, the precipitated solid was collected by filtration, washed with water, dried and crystallized to give compounds 3-29. |
In ethanol; at 70 - 80℃; for 3h; | General procedure: The mixture of <strong>[78364-55-3]6-fluoro-2-hydrazinylbenzo[d]thiazole</strong> (2) (0.01 mol) and benzalde-hyde/substituted benzaldehyde (0.01 mol) was reuxed in ethanol (15 ml) at 70?80 °C for 3 h. The separated product obtained was ltered off, washed withdistilled water and recrystallized from methanol to give the correspondinghydrazone. The product obtained was further dissolved in acetic acid (20 ml) atroom temperature followed by the addition of sodium acetate (0.5 g). Bromine(2 mmol) in acetic acid (10 ml) was added dropwise to the reuxing reactionmixture. After 1 h, the mixture was poured onto crushed ice (100 g). The precipitateobtained was ltered off and crystallized from ethanol-dimethylformamide (1:1) togive crystals of (3a?3t). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
44 mg | With sodium tris(acetoxy)borohydride; trifluoroacetic acid; In isopropyl alcohol; at 20 - 70℃; for 18h; | A suspension of 5-amino-[1 ,3,4]thiadiazole-2-carboxylic acid ethyl ester (0.30 g, 1 .75 mmol), TFA (0.27 mL, 3.50 mmol), 4-chlorobenzaldehyde (0.27 g, 1 .93 mmol) and sodium triacetoxyborohydride (0.45 g, 2.10 mmol) in isopropanol (3.5 mL) was stirred at room temperature for 2 hours and then at 70°C for 1 6 hours. After this time the reaction mixture wasconcentrated under reduced pressure and purified by flash column chromatography, eluting with EtOAc/cyclohexane (0-50percent) to afford the title compound (44 mg). LCMS method: Method 3, RT: 4.81 mm, Ml: 298 [M+1] 1H NMR (500 MHz, CDCI3) O 7.32 (d, 2H), 7.29 (d, 2H), 4.53 (5, 2H), 4.41 (q, 2H), 1 .39 (t, 3H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90% | With 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-(((S)-(6-methoxyquinoline-4-yl))((1S,2S,4S,5R-5-vinylquinuclidine-2-yl)methyl)amino)cyclobutan-3-ene-1,2-dione; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94% | With quinine; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93% | With 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-(((S)-(6-methoxyquinoline-4-yl))((1S,2S,4S,5R-5-vinylquinuclidine-2-yl)methyl)amino)cyclobutan-3-ene-1,2-dione; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
92% | With quinine; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-(((S)-(6-methoxyquinoline-4-yl))((1S,2S,4S,5R-5-vinylquinuclidine-2-yl)methyl)amino)cyclobutan-3-ene-1,2-dione; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | With quinine; In neat liquid; at 50℃; for 48h; | General procedure: Reactions were carried out with <strong>[66521-66-2]4-(pyridin-3-yl)pyrimidin-2-amine</strong> 1 (0.50 mmol), aldehyde 2 (0.50 mmol) and malonate 3 (5 mmol) in the presence of catalyst III or IV (10 molpercent) at 50 °C and stirred for 48h. After completion of the reaction (as observed by TLC), the crude product was purified by preparative TLC (GF254 silica gel: hexane/EtOAc = 7/1), giving the target chiral product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | With potassium hydroxide; In dimethyl sulfoxide; at 20℃; for 0.75h; | General procedure: 2-Aminobezamides (1 mmol) and substituted aldehydes (1.2 mmol) and 0.2 M solution of KOH in water (2 mL) in DMSO (1 mL) were stirred at room temperature. The progress of the reaction was monitored by TLC under UV light. After completion of the reaction the mixture was extracted with ethyl acetate (3 x 10 mL) and washed with water (3 x 10 mL). The combined extract was dried over anhydrous Na2SO4. The filtrate was concentrated under reduced pressure. The product was purified by column chromatography over silica gel using n-hexane/ethyl acetate (3:1 v/v) as eluent to get the purified product. The products were then characterized by ESI-MS, 1H NMR and 13C NMR spectra. |
Tags: 104-88-1 synthesis path| 104-88-1 SDS| 104-88-1 COA| 104-88-1 purity| 104-88-1 application| 104-88-1 NMR| 104-88-1 COA| 104-88-1 structure
A822961 [286013-17-0]
4-Chlorobenzaldehyde-alpha-13c
Reason: Stable Isotope
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL