With ferric sulfate nonahydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
With ferric sulfate nonahydrate In water at 80℃; for 24 h;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 μL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0percent w/w) at 80 °C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 μL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0percent w/w ofthe corresponding salt’s pellet) at 80 °C for 24 h. For the innerenvironment, NH2CHO (200 μL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0percent w/w) at80 °C for 24 h. The reaction of NH2CHO (10percent v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 μL) at 60°C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 °C, detector temperature 280 °C, gradient 100 °C for 2min, and 10 °C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98percent compared to that of the reference standards.The analysis was limited to products of ≥1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
1,2-diamino-1,2-dicyanoethylene (25 g) and glyoxylic acid monohydrate (21.3 g) were dissolved in 2N-hydrochloric acid (240 ml), and the solution was stirred at room temperature for 4 hours and then concentrated under reduced pressure. To the residue, an aqueous 10% sodium hydroxide solution (600 ml) was added and, after heating at reflux for 13 hours, the reaction solution was ice-cooled and neutralized with concentrated hydrochloric acid. The resulting ocher precipitate was collected by filtration and then washed with water and acetone. The crude product was suspended in acetic acid (800 ml) and heated at reflux at 120C for 2 hours. The reaction mixture was returned to room temperature and filtered, and then the filtrate was concentrated. The resulting precipitate was collected by filtration and washed with ether. After ice cooling methanol (600 ml), thionyl chloride (60 ml) was added dropwise, followed by stirring at room temperature for one hour, the addition of the crude product and further stirring at 80C. The reaction solution was concentrated and then purified by silica gel column chromatography (chloroform:methanol = 10:1 to 5:1) to obtain the objective product (8.0 g).
General procedure: A mixture of oxalaldehyde (1 mmol) 2,3-diaminomaleonitrile (1 mmol), sodium azide (3 mmol) in DMSO (2 mL) was stirred at 100 C for 6 h. After completion of the reaction confirmed by TLC (eluent: EtOAc/n-hexane, 1:1), the solvent was evaporated under reduced pressure. To the participate was added 20 mL of 2 N HCl with vigorous stirring causing the 2,3-di(1H-tetrazole-5-yl) pyrazine to precipitate. The precipitate was filtered and dried in a drying oven to furnish the 2,3-di(1H-tetrazole-5-yl) 5a as white powder (0.20 g, yield 93%).
5-ethyl-6-oxo-1,6-dihydropyrazine-2,3-dicarbonitrile[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
84%
In water; at 50℃; for 4h;
[0151j To a solution of 2,3-diaminomaleonitrile (20 g, 185.013 mmol) in water (400 mL) heated at 50 C was added <strong>[3952-66-7]methyl 2-oxobutanoate</strong> (21.48 g, 185.013 mmol) dropwise and the reaction mixture was stirred at the same temperature for 4 h. The reaction mixture was cooled to room temperature and allowed to precipitate for overnight. The solid formed was filtered, washed with n-pentane and dried to afford the title compound 5-ethyl-6-oxo-1,6- dihydropyrazine-2,3-dicarbonitrile (27 g, 84% yield) as a brown solid. Calculated M-H:173.16; FoundM-H: 173.2.
Hexaketocyclohexane octahydrate(8 g, 12.6 mmol) and diaminomaleonitrile (22 g, 100.8 mmol) were refluxed in AcOH (300 mL) for 2 h. The black suspension was filtered off while hot and washed with hot AcOH (3 25 mL),resulting in a black solid. The solid was suspended in 30% HNO3(60 mL) and heated at 100 C for 3 h. The hot dark brown suspension was poured into ice water (200 mL) and cooled overnight. The suspension was filtered and the solid was refluxed in MeCN(500 mL) for 2 h and was filtered. The filtrate was then evaporated in vacuo to yield an orange solid (4.5 g, yield 50%).
With hydrogenchloride; In ethanol; water; at 60℃; for 3h;Inert atmosphere;
Diamino maleonitrile (0.88 g, 8.2 mmol), 1,2-bis (4-bromophenyl) ethane-1,2-dione (3.0 g, 8.2 mmol) and hydrochloric acid (36%, 1.5 g) were reacted in 60 ml of ethanol at 60 C. for 3 hours in a nitrogen atmosphere. After cooling to room temperature, the reaction product was extracted with 100 ml of dichloromethane and 100 ml of water. The separated organic phase was dried over anhydrous magnesium sulfate and then filtered and evaporated to obtain 5,6-bis (4-bromophenyl) pyrazine-2,3-dicarbonitrile (3.2 g, yield of 90%), which is a mauve solid. 1H NMR (500 MHz, CDCl3, delta): 7.58 (dd, 4H), 7.46 (dd, 4H); MS (MALDI-TOF) m/z: [M]+ calcd for C18H8Br2N4, 437.91. found, 437.70.
With ferric sulfate nonahydrate; In water; at 80℃; for 24h;pH 7.57;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
With ferric sulfate nonahydrate; at 80℃; for 24h;pH 12.0;
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
General procedure: To model the chemical environment on the outer side of thetubular structures, NH2CHO (200 muL) was mixed with thesodium silicate solution (2.0 mL) in the presence of preformedMSH [ZnCl2, FeCl2·4H2O, CuCl2·2H2O, Fe2(SO4)3·9H2O,and MgSO4] (2.0% w/w) at 80 C for 24 h. In two selectedcases [FeCl2 and Fe2(SO4)3·9H2O], NH2CHO (200 muL) wasmixed with the sodium silicate solution (2.0 mL) in the presence of selected growing MSH (starting from 2.0% w/w ofthe corresponding salt?s pellet) at 80 C for 24 h. For the innerenvironment, NH2CHO (200 muL) was mixed with distilledwater (2.0 mL) in the presence of selected MSH (2.0% w/w) at80 C for 24 h. The reaction of NH2CHO (10% v/v) with thesodium silicate solution (pH 12) without MSH membranes wasalso analyzed under similar experimental conditions. Theproducts were analyzed by gas chromatography associatedwith mass spectrometry (GC-MS) after treatment with N,Nbis-trimethylsilyl trifluoroacetamide in pyridine (620 muL) at 60C for 4 h in the presence of betulinol (CAS Registry Number473-98-3) as the internal standard (0.2 mg). Mass spectrometrywas performed by the following program: injection temperature280 C, detector temperature 280 C, gradient 100 C for 2min, and 10 C/min for 60 min. To identify the structure of theproducts, two strategies were followed. First, the spectra werecompared with commercially available electron mass spectrumlibraries such as NIST (Fison, Manchester, U.K.). Second, GCMSanalysis was repeated with standard compounds. Allproducts have been recognized with a similarity index (SI)greater than 98% compared to that of the reference standards.The analysis was limited to products of ?1 ng/mL, and theyield was calculated as micrograms of product per startingformamide. For further experimental details, see the SupportingInformation.
With toluene-4-sulfonic acid; In methanol; for 3.0h;Reflux;
3,3-Dimethyl-2-oxobutanal 4 (17.12 g, 0.15 mol) wasrefluxed with diaminomaleonitrile (12.5 g, 0.17 mol) in thepresence of p-toluenesulfonic acid as catalyst for 3 h. Aftercooling, the mixture was passed through a pad of Celiteand the filtrate was evaporated under reduced pressure.The residue was purified by column chromatography onsilica gel using using ethyl acetate/hexane (1:3) as eluent toproduce a yellowish brown solid (15.0 g). Yield 49%. Mp160-162 C. 1H NMR (d-chloroform), delta: 1.45 (9 H, s); 8.94(1 H, s). Anal. Calcd. (%) for C10H10N7:C, 64.50; H, 5.41;N, 30.09. Found (%): C, 64.56; H, 5.39; N, 30.02.
The 2 mmol 1st product I and 2 mmol diamino malaya nitrile dissolved in 35 ml of ethanol, in 80 C heating and stirring, the reflux condensation of the reaction 23 hours, cooling to room temperature. Column chromatography purification, eluting agent is n-hexane/dichloromethane, is separated to obtain a yellow solid, HL is the ligand (four-styrene - diamino malaya nitrile derivatives).
With sulfuric acid; In methanol; at 20℃; for 0.5h;
2,2'-Bisthiophene-5-carboxaldehyde (0.1 mg. 1 eq.) and diaminomaleonitrile (0.055 mg. 1 eq.) were dissolved in 5 mL of methanol; then add a few drops of Conc. H2SO4. The reaction mixture was furthers tirred for 30 min. at room temperature until to afford the precipitate. A yellowish-orange colored solid was obtained, filtered and washed with cold ethanol, followed by diethyl ether, then dried to obtain the solid (yield=85%).
With toluene-4-sulfonic acid; In ethanol; for 5h;Reflux;
2,7-dibromophenanthrene (36.6 g, 0.1 mol), diaminomaleonitrile (13 g, 0.12 mol), p-toluenesulfonic acid(51.2g) was added to 500ml of ethanol, added to reflux reaction for 5h, TLC monitoring reaction was complete, filtered after cooling, filter cakeAfter methanol washing twice, toluene: ethanol = 1:1 recrystallization gave 28.5 g of a yellow solid, yield: 65.1%.
In a 500 ml three-necked bottle,Compound N3 (16.80 g, 1 equivalent) was added under nitrogen protection,Compound M9 (21.60 g, 2 eq), acetic acid (150 ml),Reaction at 40 C for 4 hours,After cooling to room temperature, it was quenched by adding 150 ml of water, extracted with ethyl acetate (150 ml * 3), dried over anhydrous sodium sulfate, and dried. The crude product was purified by chromatography (ethyl acetate / hexane, 1/10) ,Intermediate 1-9 was obtained (10.93 g, 35% yield).