*Storage: Inert atmosphere,Room Temperature.
*Shipping: Normal
4.5
*For Research Use Only !
Change View
Size | Price | USA Stock *0-1 Day | Global Stock *5-7 Days | In Stock |
100mg | łËò¶ÊÊ | Inquiry | Inquiry | Login |
250mg | ł§Ë¶ÊÊ | Inquiry | Inquiry | Login |
1g | łÿó¶ÊÊ | Inquiry | Inquiry | Login |
5g | łËóò¶ÊÊ | Inquiry | Inquiry | Login |
Please Login or Create an Account to: See VIP prices and availability
łËò¶ÊÊ
ł§Ë¶ÊÊ
łÿó¶ÊÊ
łËóò¶ÊÊ
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 832710-65-3 |
Formula : | C8H15ClN2O |
M.W : | 190.67 |
SMILES Code : | Cl.O=C1NCCC11CCNCC1 |
MDL No. : | MFCD02179151 |
Boiling Point : | No data available |
InChI Key : | DLQSUWJKWQAKJH-UHFFFAOYSA-N |
Pubchem ID : | 42614558 |
GHS Pictogram: | ![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.88 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 56.68 |
TPSA ? Topological Polar Surface Area: Calculated from | 41.13 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from | 0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by | 0.32 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from | -0.08 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from | 0.6 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by | 1.31 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions | 0.43 |
Log S (ESOL):? ESOL: Topological method implemented from | -1.22 |
Solubility | 11.4 mg/ml ; 0.0597 mol/l |
Class? Solubility class: Log S scale | Very soluble |
Log S (Ali)? Ali: Topological method implemented from | -0.75 |
Solubility | 34.1 mg/ml ; 0.179 mol/l |
Class? Solubility class: Log S scale | Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by | -2.06 |
Solubility | 1.65 mg/ml ; 0.00865 mol/l |
Class? Solubility class: Log S scale | Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg | High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg | No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) | Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) | No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) | No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) | No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) | No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) | No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from | -7.24 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from | 0.0 |
Ghose? Ghose filter: implemented from | None |
Veber? Veber (GSK) filter: implemented from | 0.0 |
Egan? Egan (Pharmacia) filter: implemented from | 0.0 |
Muegge? Muegge (Bayer) filter: implemented from | 1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat | 0.55 |
PAINS? Pan Assay Interference Structures: implemented from | 0.0 alert |
Brenk? Structural Alert: implemented from | 0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from | No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) | 1.77 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
EXAMPLE 18; A mixture of the Intermediate 4 (176 mg, 0.5 mmol), the spiropiperidine (as HCl salt, 115 mg, 0.6 mmol), DIEA (100 mg, 0.8 mmol), molecular sieves (4 , 200 mg) and sodium triacetoxyborohydride (212 mg, 1.0 mmol) in dichloromethane (10 mL) was stirred overnight. The reaction was quenched with sat. aq. sodium carbonate. The solid was removed by filtration through celite. The crude product was extracted into dichloromethane and purified on preparative TLC (1000 micron, 10%[aq. NH4OH/MeOH 1/9]/DCM). The title compound was obtained as a mixture of cis and trans racemic isomers (155 mg, 63%). LC-MS calc. for C26H35F3N4O2: 492; Found: 493 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
44.9% | With potassium carbonate; In DMF (N,N-dimethyl-formamide); at 60℃; for 8h; | To a mixture of 1. 49 g (7. 8 mmol) of 2, 8-diaza- spiro [4. 5] decan-l-one hydrochloride, 2. 39 g (8. 6 mmol) of 3, 3-diphenylpropyl bromide and 3. 23 g (23. 4 mmol) of potassium carbonate was added 40 mL of anhydrous DMF. The reaction mixture was stirred for 8 hours at 60C. Then 10 mL of water was added and the solution was extracted with DCM (2 x 100 mL). The combined organic layers were dried over sodium sulfate, filtered and evaporated in vacuo. The yellow crude oil was purified by flash chromatography on silica gel (DCM/methanol 100 : 0 to 90 : 10) and 8- (3, 3-diphenylpropyl)-2, 8-diaza- spiro [4. 5] decan-l-one was isolated as a pale yellow solid (1. 22 g, 44. 9%). 1H NMR (400 MHZ, DMSO-D6) : o [PPM] 7. 49 (br s, 1H), 7. 3-7. 22 (m, 8H), 7. 13 (m, 2H), 3. 97 (t, 1H), 3. 09 (t, 2H), 2. 67 (m, 2H), 2. 13 (m, 4H), 1. 86 (m, 4H), 1. 63 (t x d, 2H), 1. 25 (br d, 2H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
49% | With Silicycle dimethylamine resin; In acetonitrile; at 80℃; for 18h; | A suspension of 2-[4-(2-bromo-ethoxy)-phenoxy]-benzothiazole (EXAMPLE 9; 257 mg, 0.73 mmol), <strong>[832710-65-3]2,8-diaza-spiro[4.5]decan-1-one hydrochloride</strong> (153 mg, 0.80 mmol) and Silicycle dimethylamine resin (1.7 g, 2.4 mmol) in CH3CN was heated to 80 C. for 18 h. The reaction mixture was filtered, and the collected resin was rinsed with CH3CN. The combined filtrates were concentrated under reduced pressure to a crude solid, which was purified on SiO2 (10 g; 0-100% 10% [2 M NH3 in CH3OH] in CH2Cl2/CH2Cl2) to provide an off-white solid (152 mg, 49% yield). MS (ESI): mass calculated for C23H25N3O3S, 423.16; m/z found, 424.2 [M+H]+. 1H NMR (400 MHz, CDCl3): 7.78 (dd, J=8.1, 0.6, 1H), 7.69 (dd, J=8.0, 0.8, 1H), 7.41 (dt, J=7.5, 1.3, 1H), 7.32-7.27 (m, 3H), 7.00 (m, 2H), 6.36 (br s, 1H), 4.15 (t, J=5.9, 2H), 3.36 (t, J=7.0, 2H), 3.00, (dt, J=11.9, 3.9, 2H), 2.87 (t, J=5.8, 2H), 2.32 (dt, J=11.5, 2.4, 2H), 2.10-1.98 (m, 2H), 2.07 (t, J=7.0, 2H), 1.50 (br d, J=13.3, 2H). |
49% | With Silicycle dimethylamine resin; In acetonitrile; at 80℃; for 18h; | EXAMPLE 25; 8-F2- [4- (BENZOTHIAZOL-2-YLOXY)-PHENOXY]-ETHYL}-2, 8-diaza-spiro [4.5] decan-1-one; A suspension of 2- [4- (2-BROMO-ETHOXY)-PHENOXY]-BENZOTHIAZOLE (EXAMPLE 9; 257 mg, 0.73 MMOL), 2,8-diaza-spiro [4.5] DECAN-1-ONE hydrochloride (153 mg, 0.80 MMOL) and SILICYCLEE DIMETHYLAMINE resin (1.7 g, 2.4 MMOL) in CH3CN was heated to 80 C for 18 h. The reaction mixture was filtered, and the collected resin was rinsed with CH3CN. The combined filtrates were concentrated under reduced pressure to a crude solid, which was purified on Si02 (10 g ; 0-100% 10% [2 M NH3 in CH30H] in CH2CI2/CH2CI2) to provide an off-white solid (152 mg, 49% yield). MS (ESI) : mass calculated for C23H25N303S, 423.16 ; m/z found, 424.2 [M+H] +. 1H NMR (400 MHz, CDC13) : 7.78 (dd, J = 8.1, 0.6, 1 H), 7.69 (dd, J = 8.0, 0.8, 1H), 7.41 (dt, J = 7.5, 1.3, 1 H), 7.32-7. 27 (m, 3H), 7.00 (m, 2H), 6. 36 (BR S, 1 H), 4.15 (t, J = 5.9, 2H), 3.36 (t, J = 7.0, 2H), 3.00, (dt, J = 11.9, 3.9, 2H), 2.87 (t, J = 5. 8, 2H), 2.32 (dt, J = 11.5, 2.4, 2H), 2.10-1. 98 (m, 2H), 2.07 (t, J = 7.0, 2H), 1.50 (br d, J = 13.3, 2H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In tetrahydrofuran; water;pH ~ 10; | To a solution of 2, 8-diaza-spiro [4.5] decan-l-one hydrochloride (763 mg, 4 mmol, 1 equiv) in 10 mL of 1 : 1 THF and water was added (Boc) 20 (960 mg, 1.1 equiv). The pH of the solution was adjusted to-10 by addition of K2CO3. Upon completion, the mixture was extraction with EtOAc. Organic layer was dried over sodium sulfate, filtered, and evaporated to givel-oxo-2, 8-diaza-spiro [4,5] decane-8-carboxylic acid tert-butyl ester. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In 1-methyl-pyrrolidin-2-one; at 100℃; for 0.0833333h;Microwave irradiation; | Example 3 7-Chloro-3-[(5-{4-spiro[(2-pyrrolidinone)-3-yl1piperidin-1-yl)methyl)-([1 ,2,41-thiadiazol- 3-vDI-i -(tetrahydropyran-4-yl)methyl-1 /-/-indole, hydrochloride salt Methanesulfonic acid 3-(1-{tetrahydropyran-4-yl}methyl-7-chloro-1 H-indol-3- yl)-[1 ,2,4]thiadiazol-5-ylmethyl ester (Example 1 ; Step 1G; 0.10 g, 0.23 mmol) was dissolved in 1-methyl-2-pyrrolidinone (1 ml) and <strong>[832710-65-3]4-spiro-[3-(2-pyrrolidinone)]piperidine hydrochloride</strong> (0.21 g, 1.1 mmol) and potassium carbonate (0.30 g, 2.3 mmol) was added and the mixture was subjected to microwave irradiation for 5 min at 100 C. The mixture was filtered through a 5 g Strata SCX giga tube. The tube was washed with methanol and then eluted with 2 M ammonia in methanol. Purified by semi-prep HPLC (Method ii) to afford the title compound, (0.03 g, 0.062 mmol), as the free base. EsIMS: m/z 500.0 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In 1-methyl-pyrrolidin-2-one; at 100℃; for 0.0833333h;Microwave irradiation; | EXAMPLE 3 7-Chloro-3-[(5-{4-spirol[(2-pyrrolidinone)-3-yltaupiperidin-1-yl}methyl)-([1,2,4]-thiadiazol-3-yl)]-1-(tetrahydronyran-4-yl)methyl-1H-indole, hydrochloride salt Methanesulfonic acid 3-(1-{tetrahydropyran-4-yl}methyl-7-chloro-1H-indol-3-yl)-[1,2,4]thiadiazol-5-ylmethyl ester (Example 1; Step 1G; 0.10 g, 0.23 mmol) was dissolved in 1-methyl-2-pyrrolidinone (1 ml) and <strong>[832710-65-3]4-spiro-[3-(2-pyrrolidinone)]piperidine hydrochloride</strong> (0.21 g, 1.1 mmol) and potassium carbonate (0.30 g, 2.3 mmol) was added and the mixture was subjected to microwave irradiation for 5 min at 100 C. The mixture was filtered through a 5 g Strata SCX giga tube. The tube was washed with methanol and then eluted with 2 M ammonia in methanol. Purified by semi-prep HPLC (Method ii) to afford the title compound, (0.03 g, 0.062 mmol), as the free base. EsIMS: m/z 500.0 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
85% | N-(7-Chloro-2-methylpyrazolo[ 1 ,5-alpha]pyrimidin-5-yl)-4-(2-hydroxypropan-2- yl)benzamide (2F, 0.05g, 1.0 equivalent) and 2,8-diazaspiro[4.5]decan-l-one hydrochloride (2.0 equivalents) in DMF (0.1M) was added Et3N (6.0 equivalents). The mixture was heated to 80 0C for 2.5h. Then the solvent was removed in vacuo and the crude mixture was purified by preparatory HPLC (20-35% ACN/water, TFA mode) to afford the TFA salt of the titled compound 241 (85%) as a white solid. 1H NMR (400 MHz, DMSO-J6) delta ppm 1.45 (s, 6 H) 1.56 (d, J=13.64 Hz, 2 H) 1.84 - 1.94 (m, 2 H) 2.08 (t, J=6.82 Hz, 2 H) 2.38 (s, 3H) 3.23 (t, J=6.82 Hz, 2 H) 3.31 (t, J=12.00 Hz, 2 H) 4.34 (ddd, J=12.76, 3.54, 3.41 Hz, 2 H) 6.16 (s, 1 H) 7.35 (s, 1 H) 7.57 - 7.62 (m, 2 H) 7.67 (s, 1 H) 7.96 - 8.01 (m, 2 H) 10.85 (s, 1 H); ESI-MS: m/z 463.2 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
73% | With triethylamine; In dichloromethane; for 3h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (200 mg, 1.049 mmol) was dissolved in a mixture of dichloromethane (10 mL) and triethylamine (0.439 mL, 3.15 mmol), and 4-[(trifluoromethyl)oxy]benzenesulfonyl chloride (328 mg, 1 .259 mmol) was added. After 3 h, the reaction mixture was concentrated in vacuo, and the resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM) to give 8-({4-[(trifluoromethyl)oxy]phenyl}sulfonyl)-2,8- diazaspiro[4.5]decan-1 -one (300 mg, 0.769 mmol, 73% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .45 (ddd, J=13.47, 3.49, 3.32 Hz, 2 H) 1.62 - 1.71 (m, 2 H) 1.76 (t, J=6.77 Hz, 2 H) 2.57 - 2.65 (m, 2 H) 3.09 (t, J=6.77 Hz, 2 H) 3.43 - 3.51 (m, 2 H) 7.60 (s, 1 H) 7.64 (dd, J=8.91 , 0.90 Hz, 2 H) 7.87 - 7.92 (m, 2 H). MS ES+ve m/z 379 (M+H |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
22% | With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (200 mg, 1.049 mmol) was dissolved in a mixture of dichloromethane (10 mL) and triethylamine (0.439 mL, 3.15 mmol), and 3-(trifluoromethyl)benzenesulfonyl chloride (308 mg, 1.259 mmol) was added. After 16 h, the reaction mixture was concentrated in vacuo, and the resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM) to give two batches of the desired product as white solids: 8-[3- (trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (204 mg, 0.557 mmol, 53% yield) and 8-[3-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (83 mg, 0.227 mmol, 22% yield). 1 H NMR (400 MHz, DMSO-de) delta ppm 1 .45 (ddd, J=13.47, 3.55, 3.43 Hz, 2 H) 1.62 - 1 .71 (m, 2 H) 1 .76 (t, J=6.80 Hz, 2 H) 2.59 - 2.69 (m, 2 H) 3.08 (t, J=6.82 Hz, 2 H) 3.47 - 3.56 (m, 2 H) 7.60 (s, 1 H) 7.92 (t, J=7.87 Hz, 1 H) 7.98 (br. s., 1 H) 8.08 (d, J=8.00 Hz, 1 H) 8.14 (d, J=7.78 Hz, 1 H). MS ES+ve m/z 363 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
99% | With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (280 mg, 1.469 mmol) was dissolved in dichloromethane (40 mL) and triethylamine (0.614 mL, 4.41 mmol), and 4-(trifluoromethyl)benzenesulfonyl chloride (467 mg, 1 .909 mmol) was added. After 16 h, the reaction mixture was washed with aqueous 2 M HCI followed by aqueous 2 M NaOH, and the organic layer was passed through a hydrophobic frit and concentrated in vacuo. The resulting residue was purified by silica columnchromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM) to give 8-[4- (trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (532 mg, 1 .453 mmol, 99% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1.45 (ddd, J=13.29, 3.51 , 3.32 Hz, 2 H) 1.61 - 1 .72 (m, 2 H) 1 .77 (t, J=6.80 Hz, 2 H) 2.60 - 2.70 (m, 2 H) 3.09 (t, J=6.82 Hz, 2 H) 3.49 (ddd, J=1 1 .96, 4.65, 4.38 Hz, 2 H) 7.60 (s, 1 H) 7.97 (d, J=8.28 Hz, 2 H) 8.04 (d, J=8.39 Hz, 2 H). MS ES+ve m/z 363 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With triethylamine; In dichloromethane; for 17h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (1 1 1 mg, 0.584 mmol) was dissolved in dichloromethane (10 mL) and triethylamine (0.244 mL, 1 .751 mmol), and 3,5-dichlorobenzenesulfonyl chloride (158 mg, 0.642 mmol) was added. After stirring for 17 h the reaction mixture was concentrated in vacuo and the resulting residue was purified by MDAP to give two batches of products: 8-[(3,5-dichlorophenyl)- sulfonyl]-2,8-diazaspiro[4.5]decan-1 -one (53.5 mg, 0.144 mmol, 25% yield) and 8- [(3,5-dichlorophenyl)sulfonyl]-2,8-diazaspiro[4.5]decan-1 -one (76.6 mg, 0.207 mmol, 35% yield) both as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1.45 (ddd, J=13.33, 3.27, 3.01 Hz, 2 H) 1.60 - 1 .72 (m, 2 H) 1 .81 (t, J=6.80 Hz, 2 H) 2.61 - 2.74 (m, 2 H) 3.10 (t, J=6.80 Hz, 2 H) 3.52 (ddd, J=12.02, 4.48, 4.17 Hz, 2 H) 7.61 (s, 1 H) 7.76 (d, J=1.92 Hz, 2 H) 8.05 (t, J=1.86 Hz, 1 H). MS ES+ve m/z 363 (M+H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
57% | With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (240 mg, 1.259 mmol) was dissolved in dichloromethane (10 mL) and triethylamine (0.526 mL, 3.78 mmol), and 2-chloro-4-(trifluoromethyl)benzenesulfonyl chloride (457 mg, 1.636 mmol) was added. After stirring for 16 h, the reaction mixture was washed sequentially with aqueous 0.5 M HCI and 0.5 M NaOH, the organic layer was passed through a hydrophobic frit, and concentrated in vacuo. The resulting residue was recrystallised from methanol to give 8-[2-chloro-4-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (300 mg, 0.718 mmol, 57% yield) as a white solid. 1 H NMR (250 MHz, DMSO-d6) delta ppm 1 .38 - 1.49 (m, 2 H) 1.65 (ddd, J=13.38, 10.87, 4.22 Hz, 2 H) 1 .91 (t, J=6.83 Hz, 2 H) 2.96 - 3.09 (m, 2 H) 3.14 (t, J=6.81 Hz, 2 H) 3.65 (dt, J=12.99, 4.21 Hz, 2 H) 7.61 (s, 1 H) 7.94 (ddd, J=8.27, 1 .82, 0.62 Hz, 1 H) 8.14 - 8.22 (m, 2 H). MS ES+ve m/z 397 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
49% | With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (100 mg, 0.524 mmol) was dissolved in dichloromethane (5 mL) and triethylamine (0.146 mL, 1.047 mmol). Then 3-[(trifluoromethyl)oxy]benzenesulfonyl chloride (0.098 mL, 0.577 mmol) was added and stirred for 16 h. The reaction mixture was concentrated in vacuo and the resulting residue was purified by MDAP to give 8-({3-[(trifluoromethyl)oxy]phenyl}- sulfonyl)-2,8-diazaspiro[4.5]decan-1 -one (99 mg, 0.259 mmol, 49% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .44 (ddd, J=13.41 , 3.55, 3.32 Hz, 2 H) 1 .60 - 1 .71 (m, 2 H) 1 .76 (t, J=6.80 Hz, 2 H) 2.57 - 2.69 (m, 2 H) 3.09 (t, J=6.82 Hz, 2 H) 3.45 - 3.54 (m, 2 H) 7.60 (s, 1 H) 7.68 (dd, J=1.67, 0.79 Hz, 1 H) 7.74 - 7.83 (m, 3 H). MS ES+ve m/z 379 (M+H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (200 mg, 1.049 mmol) was dissolved in a mixture of triethylamine (0.439 mL, 3.15 mmol) and dichloromethane (10 mL), and 2-bromo-4-(trifluoromethyl)benzenesulfonyl chloride (407 mg, 1 .259 mmol) was added. The reaction mixture was stirred for 16 h and the reaction mixture was concentrated in vacuo. The resulting yellow solid 8-[2-bromo-4- (trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (820 mg, impure) was used in the next reaction without further purification. MS ES+ve m/z 443 (M+H). 8-[2-Bromo-4-(trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (820 mg, impure) and potassium carbonate (217 mg, 1 .574 mmol) was suspended in 1 ,4- dioxane (10 mL). Trimethylboroxine (0.219 mL, 1.574 mmol) and Pd(PPh3)4 (121 mg, 0.105 mmol) were then added and the reaction mixture was heated to 100 C. After 20 h, the reaction was cooled, filtered through a hydrophobic frit, and concentrated in vacuo. The resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM). The resulting brown residue was further purified on MDAP to give 8-[2-methyl-4-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (61 mg, 0.160 mmol, 15% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .39 - 1.49 (m, 2 H) 1.59 - 1 .69 (m, 2 H) 1 .89 (t, J=6.80 Hz, 2 H) 2.64 (s, 3 H) 2.85 - 2.96 (m, 2 H) 3.13 (t, J=6.82 Hz, 2 H) 3.54 (ddd, J=12.48, 4.01 , 3.84 Hz, 2 H) 7.63 (s, 1 H) 7.79 (d, J=7.67 Hz, 1 H) 7.89 (s, 1 H) 8.01 (d, J=8.22 Hz, 1 H). MS ES+ve m/z 377 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (200 mg, 1.049 mmol) was dissolved in a mixture of triethylamine (0.439 mL, 3.15 mmol) and dichloromethane (10 mL), and 3-bromo-5-(trifluoromethyl)benzenesulfonyl chloride (407 mg, 1 .259 mmol) was added. The reaction mixture was stirred for 16 h and the reaction mixture was concentrated in vacuo. The resulting yellow solid 8-[3-bromo-5- (trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (819 mg, impure) was used in the next reaction without further purification. MS ES+ve m/z 443 (M+H). 8-[3-Bromo-5-(trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (819 mg, impure) and potassium carbonate (217 mg, 1.574 mmol) was suspended in 1 ,4- dioxane (10 mL). Trimethylboroxine (0.219 mL, 1.574 mmol) and Pd(PPh3)4 (121 mg, 0.105 mmol) were then added and the reaction mixture was heated to 100 C. After 20 h, the reaction was cooled, filtered through a hydrophobic frit, and concentrated in vacuo. The resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM). The resulting brown residue was further purified on MDAP to give 8-[3-methyl-5-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (126 mg, 0.331 mmol, 32% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .46 (dt, J=13.41 , 3.46 Hz, 2 H) 1.61 - 1 .72 (m, 2 H) 1 .77 (t, J=6.80 Hz, 2 H) 2.52 (s, 3 H) 2.57 - 2.66 (m, 2 H) 3.09 (t, J=6.80 Hz, 2 H) 3.46 - 3.54 (m, 2 H) 7.55 - 7.63 (m, 1 H) 7.76 (s, 1 H) 7.89 (s, 1 H) 7.96 (s, 1 H). MS ES+ve m/z 377 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (200 mg, 1.049 mmol) was dissolved in a mixture of triethylamine (0.439 ml, 3.15 mmol) and dichloromethane (10 ml), and 2-bromo-5-(trifluoromethyl)benzenesulfonyl chloride (407 mg, 1 .259 mmol) was added. The reaction mixture was stirred for 16 h and the reaction mixture was concentrated in vacuo. The resulting yellow solid 8-[2-bromo-5- (trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (825 mg, impure) was used in the next reaction without further purification. MS ES+ve m/z 443 (M+H). 8-[2-bromo-5-(trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (825 mg, impure) and potassium carbonate (217 mg, 1.574 mmol) was suspended in 1 ,4- dioxane (10 ml_). Trimethylboroxine (0.219 ml_, 1.574 mmol) and Pd(PPh3)4 (121 mg, 0.105 mmol) were then added and the reaction mixture was heated to 100 C. After 20 h, the reaction was cooled, filtered through a hydrophobic frit, and concentrated in vacuo. The resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM). The resulting brown residue was further purified on MDAP twice to give 8-[2-methyl-5-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (41 mg, 0.107 mmol) as a white solid. 1 H N MR (400 MHz, DMSO-de) delta ppm 1.39 - 1.49 (m, 2 H) 1.58 - 1 .70 (m, 2 H) 1 .89 (t, J=6.80 Hz, 2 H) 2.65 (s, 3 H) 2.84 - 2.95 (m, 2 H) 3.13 (t, J=6.80 Hz, 2 H) 3.54 (ddd, J=12.63, 4.08, 3.95 Hz, 2 H) 7.63 (s, 1 H) 7.74 (d, J=7.95 Hz, 1 H) 7.98 (dd, J=8.03, 1 .40 Hz, 1 H) 8.03 (d, J=1 .21 Hz, 1 H). MS ES+ve m/z 377 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
42% | With triethylamine; In dichloromethane; for 17h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (100 mg, 0.524 mmol) was dissolved in dichloromethane (10 mL) and triethylamine (0.219 mL, 1 .573 mmol). Then 3-fluoro-5-(trifluoromethyl)benzenesulfonyl chloride (165 mg, 0.629 mmol) was added and stirred for 17 h. The mixture was concentrated in vacuo and the resulting residue was purified by MDAP to give two batches of product: 8-[3-fluoro-5-(trifluoromethyl)phenyl]sulfonyl}-2,8-diazaspiro[4.5]decan-1 -one (33.74 mg, 0.087 mmol, 17% yield) and 8-[3-fluoro-5-(trifluoromethyl)phenyl]sulfonyl}-2,8- diazaspiro[4.5]decan-1 -one (51 mg, 0.131 mmol, 25% yield) both as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .41 - 1.48 (m, 2 H) 1.61 - 1 .70 (m, 2 H) 1 .80 (t, J=6.80 Hz, 2 H) 2.64 - 2.73 (m, 2 H) 3.10 (t, J=6.80 Hz, 2 H) 3.55 (ddd, J=12.15, 4.34, 4.1 1 Hz, 2 H) 7.61 (s, 1 H) 7.84 (s, 1 H) 8.00 (d, J=7.73 Hz, 1 H) 8.18 (d, J=8.50 Hz, 1 H). MS ES+ve m/z 381 (M+H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
66% | With triethylamine; In dichloromethane; for 16h; | 2,8-Diazaspiro[4.5]decan-1 -one hydrogen chloride (185 mg, 0.973 mmol) was dissolved in a mixture of triethylamine (0.542 ml_, 3.89 mmol) and dichloromethane (10 ml_), and 3-chloro-4-[(trifluoromethyl)oxy]benzenesulfonyl chloride (344 mg, 1 .167 mmol) was added. After 16 h the reaction mixture was concentrated in vacuo and the resulting residue was purified by silica column chromatography on SP4 (gradient elution: 0 - 20% MeOH - DCM) to give a yellow solid. The yellow solid was further purified on MDAP to give 8-({3-chloro-4-[(trifluoromethyl)oxy]phenyl}sulfonyl)- 2,8-diazaspiro[4.5]decan-1 -one (269 mg, 0.645 mmol, 66% yield) as a white solid. 1 H NMR (400 MHz, DMSO-d6) delta ppm 1 .40 - 1.51 (m, 2 H) 1.61 - 1 .72 (m, 2 H) 1 .80 (t, J=6.80 Hz, 2 H) 2.62 - 2.73 (m, 2 H) 3.10 (t, J=6.82 Hz, 2 H) 3.51 (ddd, J=12.00, 4.38, 4.17 Hz, 2 H) 7.61 (s, 1 H) 7.80 - 7.89 (m, 2 H) 8.02 - 8.07 (m, 1 H). MS ES+ve m/z 413 (M+H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In acetonitrile; at 120℃; for 0.333333h;Microwave irradiation; | Compound 12: 8-({1-[3-(Trifluoromet yl)phenyl]-1W-tetrazol-5-yl}methyl)-2,8- diazaspiro[4.5]f. e can-1-one; To a solution of 5-(chloromethyl)-1-[3-(trifluoromethyl)phenyl]-1 H-tetrazole (200 mg, 0.762 mmol, commercially available from Otava, Kiev, Ukraine) in acetonitrile (4 mL) was added 2,8-diazaspiro[4.5]decan-1 -one hydrochloride (290 mg, 1.52 mmol, Tyger Scientic, Ewing, USA) and triethylamine (0.318 mL, 2.29 mmol). The reaction mixture was heated at 120C for 20 minutes in a microwave reactor. The reaction mixture was then cooled and the solvent removed under vacuum. The residue was purified by MDAP. Fractions containing the desired product were combined and the solvent removed. The product was partitioned between DC (6mL) and saturated aqueous NaHC03 (3mL) and the organic layer collected via a hydrophobic frit. The solvent was removed under a stream of argon to yield the title compound as a solid (0.161g).MS ES+ve m/z 381 (M+H)1H NMR (400 MHz, Chloroform-d) d ppm 1.48 (d, 2 H) 1.88 - 1.97 (m, 2 H) 2.06 (t, J=6.9 Hz, 2 H) 2.37 (td, J=11 .4, 2.6 Hz, 2 H) 2.92 (dt, J=1 1 .8, 3.8 Hz, 2 H) 3.35 (t, J=6.9 Hz, 2 H) 3.78 (s, 2 H) 5.95 (br. s., 1 H) 7.74 (t, J=7.9 Hz, 1 H) 7.83 (d, J=7.9 Hz, 1 H) 8.1 1 (d, J=8.1 Hz, 1 H) 8.33 (s, 1 H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In dichloromethane; at 0 - 20℃; | 1-1To a solution of 3-nitrosalicyclic acid (500 mg, 2.73 mmol) in dichloromethane (10 mL) is added oxalylchloride (2 M in dichloromethane, 1.50 ml, 3 mmol) and three drops ofN,N- dimethylformamide. The mixture is stirred at room temperature overnight. The solvent is evaporated under vacuum to leave a crude residue, a portion of which (127 mg, 0.63 mmol) is dissolved in dichloromethane (5 mL) and the solution cooled to 0 C. Triethylamine (0.22 mL, 1.57 mmol) is added followed by 2,8-diaza-spiro[4.5]decan-l-one hydrochloride (100 mg, 0.52 mmol). The mixture is allowed to warm to room temperature and stirred overnight. Water is added, the phases separated, the organic layer dried over MgS04 and evaporated under reduced pressure to give compound 1-1.Yield: 200 mgES mass spectrum: [M+H]+ = 320Retention time: 0.69 min (UPLC method 2) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Example 4Compound 4-2 (50 mg, 0.15 mmol) and PyBOP (160 mg, 0.31 mmol) are dissolved in DMF (1.5 mL) and stirred for 20 minutes. 2,8-Diaza-spiro[4.5]decan-l-one hydrochloride (41 mg, 0.22 mmol) and triethylamine (86 mu, 0.62 mmol) are added and the mixture stirred overnight. The solvent is removed under reduced pressure, the residue dissolved in DCM and washed with 5% aqueous NaHC03 solution, dried and the solvent removed. The residue is purified by flash chromatography (Silica Gel, gradient: DCM/methanol from 98:2 to 90: 10) to give Example 4.Yield: 14 mgES mass spectrum: [M+H]+ = 461Retention time: 9.95 min (Method 6)'H NMR (Varian 400 MHz. DMSO-d6; 28 C) 9.57 (IH, br); 9.17 (IH, s); 9.08 (IH, s); 7.97 (2H, m); 7.57 (IH, s); 7.31 (IH, m); 7.05 (IH, m); 6.84 (2H, m); 3.91 (IH, br); 3.09 (5H, m); 1.99 (2H, m); 1.67 (2H, m); 1.39 (2H, m). | ||
Compound 4-2 (50 mg, 0.15 mmol) and PyBOP (160 mg, 0.31 mmol) are dissolved in DMF (1.5 mL) and stirred for 20 minutes. 2,8-Diaza-spiro[4.5]decan-1-one hydrochloride (41 mg, 0.22 mmol) and triethylamine (86 muL, 0.62 mmol) are added and the mixture stirred overnight. The solvent is removed under reduced pressure, the residue dissolved in DCM and washed with 5% aqueous NaHCO3 solution, dried and the solvent removed. The residue is purified by flash chromatography (Silica Gel, gradient: DCM/methanol from 98:2 to 90:10) to give Example 4.Yield: 14 mgES mass spectrum: [M+H]+=461Retention time: 9.95 min (Method 6)1H NMR (Varian 400 MHz. DMSO-d6; 28 C.) 9.57 (1H, br); 9.17 (1H, s); 9.08 (1H, s); 7.97 (2H, m); 7.57 (1H, s); 7.31 (1H, m); 7.05 (1H, m); 6.84 (2H, m); 3.91 (1H, br); 3.09 (5H, m); 1.99 (2H, m); 1.67 (2H, m); 1.39 (2H, m). |
Tags: 832710-65-3 synthesis path| 832710-65-3 SDS| 832710-65-3 COA| 832710-65-3 purity| 832710-65-3 application| 832710-65-3 NMR| 832710-65-3 COA| 832710-65-3 structure
A352033 [2696-03-9]
2,8-Diazaspiro[4.5]decane-1,3-dione hydrochloride
Similarity: 0.97
A401557 [1187173-43-8]
2,7-Diazaspiro[4.5]decan-1-one hydrochloride
Similarity: 0.94
A148160 [561314-57-6]
2,8-Diazaspiro[4.5]decan-3-one
Similarity: 0.94
A352033 [2696-03-9]
2,8-Diazaspiro[4.5]decane-1,3-dione hydrochloride
Similarity: 0.97
A401557 [1187173-43-8]
2,7-Diazaspiro[4.5]decan-1-one hydrochloride
Similarity: 0.94
A148160 [561314-57-6]
2,8-Diazaspiro[4.5]decan-3-one
Similarity: 0.94
A352033 [2696-03-9]
2,8-Diazaspiro[4.5]decane-1,3-dione hydrochloride
Similarity: 0.97
A401557 [1187173-43-8]
2,7-Diazaspiro[4.5]decan-1-one hydrochloride
Similarity: 0.94
A148160 [561314-57-6]
2,8-Diazaspiro[4.5]decan-3-one
Similarity: 0.94
A144111 [1158750-89-0]
2,7-Diazaspiro[4.5]decan-3-one
Similarity: 0.91
A352033 [2696-03-9]
2,8-Diazaspiro[4.5]decane-1,3-dione hydrochloride
Similarity: 0.97
A401557 [1187173-43-8]
2,7-Diazaspiro[4.5]decan-1-one hydrochloride
Similarity: 0.94
A148160 [561314-57-6]
2,8-Diazaspiro[4.5]decan-3-one
Similarity: 0.94
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL