*Storage: Sealed in dry, 2-8°C.
*Shipping:
Fmoc-Pro-OH is a protected proline derivative with the amino group protected by 9-fluorenylmethoxycarbonyl (Fmoc), suitable for peptide synthesis.
4.5
*For Research Use Only !
Change View
Size | Price | US Stock | Global Stock | In Stock |
5g | łÇʶÊÊ | In Stock | In Stock | Login |
10g | łÇ§¶ÊÊ | Inquiry | In Stock | Login |
25g | łËʶÊÊ | In Stock | In Stock | Login |
100g | łÿʶÊÊ | In Stock | In Stock | Login |
500g | łÇóʶÊÊ | In Stock | In Stock | Login |
1kg | ł§ËʶÊÊ | Inquiry | In Stock | Login |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
łÇʶÊÊ
łÇ§¶ÊÊ
łËʶÊÊ
łÿʶÊÊ
łÇóʶÊÊ
ł§ËʶÊÊ
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Indole C6 Functionalization of Tryprostatin B Using Prenyltransferase CdpNPT
Gardner, Eric D. ; Dimas, Dustin A. ; Finneran, Matthew C. ; Brown, Sara M. ; Burgett, Anthony W. ; Singh, Shanteri
Abstract: Tryprostatin A and B are prenylated, tryptophan-containing, diketopiperazine natural products, displaying cytotoxic activity through different mechanisms of action. The presence of the 6-methoxy substituent on the indole moiety of tryprostatin A was shown to be essential for the dual inhibition of topoisomerase II and tubulin polymerization However, the inability to perform late-stage modification of the indole ring has limited the structure-activity relationship studies of this class of natural products. Herein, we describe an efficient chemoenzymic approach for the late-stage modification of tryprostatin B using a cyclic dipeptide N-prenyltransferase (CdpNPT) from Aspergillus fumigatus, which generates novel analogs functionalized with allylic, benzylic, heterocyclic, and diene moieties. Notably, this biocatalytic functionalizational study revealed high selectivity for the indole C6 position. Seven of the 11 structurally characterized analogs were exclusively C6-alkylated, and the remaining four contained predominant C6-regioisomers. Of the 24 accepted substrates, 10 provided >50% conversion and eight provided 20-50% conversion, with the remaining six giving <20% conversion under standard conditions. This study demonstrates that prenyltransferase-based late-stage diversification enables direct access to previously inaccessible natural product analogs.
Show More >
Keywords: biocatalysts ; chemoenzymatic synthesis ; late-stage functionalization ; prenyltransferase ; tryprostatin
Show More >
Purchased from AmBeed: 71989-31-6 ; 3189-13-7 ; 3945-69-5 ; 70-23-5 ; 556-82-1
Show More >
CAS No. : | 71989-31-6 |
Formula : | C20H19NO4 |
M.W : | 337.37 |
SMILES Code : | O=C([C@H]1N(C(OCC2C3=C(C4=C2C=CC=C4)C=CC=C3)=O)CCC1)O |
MDL No. : | MFCD00037122 |
InChI Key : | ZPGDWQNBZYOZTI-SFHVURJKSA-N |
Pubchem ID : | 688135 |
GHS Pictogram: | ![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: All aza-peptidyl inhibitors and probes were synthesized by following the previously reported procedures 1, 2 with slight modifications. Fmoc protecting groups from Rink SS resin (0.75 mmol/g) were removed by treatment with 20percent piperidine in DMF for 15 min, followed by three washes with DMF. A 1.2 M solution of bromoacetic acid (10 eq) in NMP and DIC (10 eq) were added to the resin. The resin was shaken 1.5 hrs and washed three times. A solution of Mono-Fmoc protected hydrazide (3 eq) in NMP was added and shaken overnight. Resin loading was determined by Fmoc-quantification (0.2-0.3 mmol/g). A 0.5M solution of N-Fmoc-protected amino acid (3 eq.) and HOBt (3 eq.) in DMF and DIC (3 eq.) were added to the resin. The resin was shaken 1.5-2hrs. For each of the following steps, Fmoc-deprotection and coupling reactions were repeated as described above. Capping of N-terminal amine was achieved by shaking the resin with a 0.5 M solution of acetic anhydride (5 eq.) and DIEA (5 eq.) in DMF for 5 min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: All aza-peptidyl inhibitors and probes were synthesized by following the previously reported procedures 1, 2 with slight modifications. Fmoc protecting groups from Rink SS resin (0.75 mmol/g) were removed by treatment with 20percent piperidine in DMF for 15 min, followed by three washes with DMF. A 1.2 M solution of bromoacetic acid (10 eq) in NMP and DIC (10 eq) were added to the resin. The resin was shaken 1.5 hrs and washed three times. A solution of Mono-Fmoc protected hydrazide (3 eq) in NMP was added and shaken overnight. Resin loading was determined by Fmoc-quantification (0.2-0.3 mmol/g). A 0.5M solution of N-Fmoc-protected amino acid (3 eq.) and HOBt (3 eq.) in DMF and DIC (3 eq.) were added to the resin. The resin was shaken 1.5-2hrs. For each of the following steps, Fmoc-deprotection and coupling reactions were repeated as described above. Capping of N-terminal amine was achieved by shaking the resin with a 0.5 M solution of acetic anhydride (5 eq.) and DIEA (5 eq.) in DMF for 5 min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
The solid phase peptide synthesis (SPPS) was performed using a microwave assisted protocol (Discover microwave oven, CEMCorp.) starting from Fmoc-Leu-Wang resin. The reactions were carried out in a silanized glass tube loosely sealed with a silicon septum. Remark: the development of overpressure was avoided by using DMF as the solvent and intermittent cooling in an ethanol-ice bath. The amino acids were incorporated as their commercially available derivatives in the following order: Fmoc-Ile-OH, Fmoc-N-homo-Tyr(tBu)-OH (synthesized according to ref. 18), Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-N-Me-Arg(Mtr)-OH and Fmoc-propargyl-Gly-OH. Elongation of the peptide chain was performedby repetitive cycles of Fmoc deprotection and subsequent couplings of the amino acid. Fmoc deprotection was performed by treating the resin with 25% piperidine in DMF (microwave irradiation: 7 5 s, 100 W), followed by washings with DMF (5). In between each irradiation step, cooling of the reaction mixture to a temperature of 10 C was achieved by sufficient agitation in an ethanol-ice bath. Peptide couplings of Fmoc-Ile-OH, Fmoc-Arg(Pbf)-OH and Fmoc-N-Me-Arg(Mtr)-OH were performed employing 5 equiv of each Fmoc-AA/PyBOP/DIPEA and 7.5 equiv 1-hydroxybenzotriazole (HOBt), dissolved in a minimum amount of DMF (irradiation: 20 10 s, 50W and intermittent cooling). Fmoc-N-homo-Tyr(tBu)-OH (3 equiv) was coupled with 3 equiv PyBOP/DIPEA and 4.5 equiv HOBt in DMF. Fmoc-Pro-OH (5 equiv)and Fmoc-propargyl-Gly-OH (5 equiv) were subjected to a double coupling with HATU (5 equiv) and DIPEA (10 equiv) in DMF. After the last acylation step, the N-terminal Fmoc-residue was deprotected, the resin was 10 rinsed with CH2Cl2 and dried in vacuo. The cleavage from the resin was performed using a mixture of trifluoroacetic acid (TFA)/phenol/H2O/triisopropylsilane (TIS) 88:6:4:2 for 4 h, followed by a filtration of the resin. After evaporation of the solvent in vacuo and precipitation in t-butylmethylether, the crude peptides were purified using preparative RP-HPLC (Agilent 1100 preparative series, column Zorbax Eclipse XDB-C8, 21.2 mm, 150 mm, 5 lm particles, flow rate 10 mL/min) with the solvent system 3-35% acetonitrile in water (0.1% HCO2H) in a linear gradient over 18.0 min, tR: 10.5 min. After the separation, the peptide was lyophilized and peptide purity and identity were assessed by analytical HPLC (Agilent 1100 analytical series, equipped with QuatPump and VWD detector; column ZorbaxEclipse XDB-C8 analytical column, 4.6 mm, 150 mm, 5 lm, flow rate 0.5 mL/min) coupled to a Bruker Esquire 2000 mass detector equipped with an ESI-trap. ESI-TOF high mass accuracy and resolution experiments were performed on a BRUKER maXis MS (BrukerDaltonics, Bremen) in the laboratories of the Chair of OrganicChemistry (Prof. Dr. Rik Tykwinski), Department of Pharmacy and Chemistry, Friedrich-Alexander University of Erlangen Nuremberg. Purity: solvent system 1: 10-55% methanol in water (0.1% HCO2H)in a linear gradient over 18 min, tR = 14.6 min (>99 %); solvent system 2: 3-40% acetonitrile in water (0.1% HCO2H) in a linear gradient over 26 min, tR = 15.9 min (>99%). ESI-MS: m/z calcd:940.6, found: 940.6 [M+H]+; HR-ESI-TOF: [M+H]+ calcd forC45H74N13O9: 940.5732, found: 940.5724. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
All peptides were synthesized on a 0.2 mmol scale using manual Fmoc-SPPS chemistry under flow using a 3 minute cycle for each amino acid. Specifically, all reagents and solvents are delivered to a stainless steel reactor containing resins at a constant flow rate using HPLC pump; temperature of the reactor was maintained at 60 °C during the synthesis using water bath. Procedure for each amino acid coupling cycle included a 30 second coupling with 1 mmol Fmoc-protected amino acid, 1 mmol HBTU, and 500 of diisopropyl ethyl amine (DIEA) in 2.5 mL of DMF at a flow rate of 6 mL/min (note that for coupling of cysteine and tryptophan, 190 of DIEA was used to prevent racemization); 1 minute wash with DMF at a flow rate of 20 mL/min; 20 second deprotection with 50percent (v/v) piperidine in DMF at a flow rate of 20 mL/min; and 1 minute wash with DMF at a flow rate was 20 mL/min. After completion of the stepwise SPPS, the resin was washed thoroughly with DCM and dried under vacuum. The peptide is simultaneously cleaved from the resin and side-chain deprotected by treatment with 2.5percent (v/v) water, 2.5percent (v/v) 1 ,2- ethanedithiol (EDT), and 1percent (v/v) triisoproprylsilane in neat trifluoroacetic acid (TFA) for 2 hours at room temperature. The resulting solution containing peptide was evaporated by blowing a stream of nitrogen gas over its surface for 15 minutes, then triturated and washed with cold diethyl ether three times. The obtained gummy-like solid was dissolved in 50percent H20: 50percent acetonitrile containing 0.1percent TFA and lyophilized. These same solvent compositions were used in majority of experiments and will be referred to as A: 0.1percent TFA in H20 and B: 0.1percent TFA in acetonitrile. c. Peptide Purification The crude peptide was dissolved in 95percent A: 5percent B with 6 M guanidinium hydrochloride and purified by semi-preparative RP-HPLC (Agilent Zorbax SB C18 column: 21.2 x 250 mm, 7 mutaueta, linear gradient: 5-50percent B over 90 min, flow rate: 5 mL/min). 1 of each HPLC fraction was mixed with 1 mu^ of alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix in 75percent A: 25percent B, spotted with MALDI, and checked for fractions with desired molecular mass. The purity of fractions was confirmed by analytical RP-HPLC (Agilent Zorbax SB C3 column: 2.1 x 150 mm, 5 muiotaeta, gradient: 0-2 minutes 5percent B, 2-11 minutes 5- 65percent B, 11-12 minutes 65percent B, flow rate: 0.8 mL/min). HPLC fractions containing only product materials were confirmed by LC-MS analysis, combined, and then lyophilized. Peptides synthesized using fast flow-based SPPS and purified by RP-HPLC are listed in Table SI . |
Tags: Fmoc-Pro-OH | Carbamates | N-protective Amino Acid | Pyrrolidines | Heterocyclic Building Blocks | Organic Building Blocks | Amino Acids | 71989-31-6
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL