Home Cart Sign in  
Chemical Structure| 71989-18-9 Chemical Structure| 71989-18-9
Chemical Structure| 71989-18-9

Fmoc-Glu(OtBu)-OH

CAS No.: 71989-18-9

Fmoc-Glu(OtBu)-OH is a protected glutamic acid derivative with the amino group protected by 9-fluorenylmethoxycarbonyl (Fmoc) and the carboxyl group esterified by tert-butyl, suitable for peptide synthesis.

Synonyms: (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(tert-butoxy)-5-oxopentanoic acid

4.5 *For Research Use Only !

Cat. No.: A165615 Purity: 98%

Change View

Size Price

US Stock

Global Stock

In Stock
5g łÇʶÊÊ Inquiry Inquiry
10g łÇ˶ÊÊ Inquiry Inquiry
25g łÇò¶ÊÊ Inquiry Inquiry
100g łÿď¶ÊÊ Inquiry Inquiry
500g łËóͶÊÊ Inquiry Inquiry
1kg łÿòď¶ÊÊ Inquiry Inquiry

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • 5g

    łÇʶÊÊ

  • 10g

    łÇ˶ÊÊ

  • 25g

    łÇò¶ÊÊ

  • 100g

    łÿď¶ÊÊ

  • 500g

    łËóͶÊÊ

  • 1kg

    łÿòď¶ÊÊ

In Stock

- +

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Ogawa, Kazuma ; Nishizawa, Kota ; Mishiro, Kenji ; Munekane, Masayuki ; Fuchigami, Takeshi ; Echigo, Hiroaki , et al.

Abstract: Acidic amino acid peptides have a high affinity for bone. Previously, we demonstrated that radiogallium complex-conjugated oligo-acidic amino acids possess promising properties as bone-seeking radiopharmaceuticals. Here, to elucidate the effect of stereoisomers of Glu in Glu-containing peptides [(Glu)14] on their accumulation in the kidney, the biodistributions of [67Ga]Ga-N,N′ -bis-[2-hydroxy- 5-(carboxyethyl)benzyl]ethylenediamine-N,N′ -diacetic acid-conjugated (L-Glu)14 ([67Ga]Ga-HBED-CC- (L-Glu)14), [67Ga]Ga-HBED-CC-(D-Glu)14, [67Ga]Ga-HBED-CC-(DL-Glu)14, and [67Ga]Ga-HBED-CC- (D-Glu-L-Glu)7 were compared. Although the accumulation of these compounds in the bone was comparable, their kidney accumulation and retention were strikingly different, with [67Ga]Ga-HBED-CC- (D-Glu-L-Glu)7 exhibiting the lowest level of kidney accumulation among these compounds. Repeated D- and L-peptides may be a useful method for reducing renal accumulation in some cases.

Keywords: kidney accumulation ; bone imaging ; ; bone metastases ; gallium

Purchased from AmBeed: ;

Alternative Products

Product Details of Fmoc-Glu(OtBu)-OH

CAS No. :71989-18-9
Formula : C24H27NO6
M.W : 425.47
SMILES Code : O=C(O)[C@@H](NC(OCC1C2=C(C3=C1C=CC=C3)C=CC=C2)=O)CCC(OC(C)(C)C)=O
Synonyms :
(S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(tert-butoxy)-5-oxopentanoic acid
MDL No. :MFCD00037135
InChI Key :OTKXCALUHMPIGM-FQEVSTJZSA-N
Pubchem ID :2724637

Safety of Fmoc-Glu(OtBu)-OH

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Application In Synthesis of Fmoc-Glu(OtBu)-OH

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 71989-18-9 ]

[ 71989-18-9 ] Synthesis Path-Downstream   1~34

  • 1
  • [ 122889-11-6 ]
  • [ 71989-18-9 ]
  • [ 35737-15-6 ]
  • [ 35661-38-2 ]
  • Cbz-His-OH [ No CAS ]
  • (R)-4-{(R)-2-Benzyloxy-1-[(R)-1-((S)-1-carbamoyl-ethylcarbamoyl)-2-(1H-indol-3-yl)-ethylcarbamoyl]-ethylcarbamoyl}-4-[(R)-2-benzyloxycarbonylamino-3-(1H-imidazol-4-yl)-propionylamino]-butyric acid [ No CAS ]
  • 2
  • [ 71989-18-9 ]
  • Fmoc-Leu-OH [ No CAS ]
  • [ 145038-49-9 ]
  • 3
  • C34H28N2O7 [ No CAS ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 122889-11-6 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 103213-32-7 ]
  • [ 86060-81-3 ]
  • [ 116611-64-4 ]
  • [ 223416-45-3 ]
YieldReaction ConditionsOperation in experiment
Chelmical synthesis: Peptides were synthesized on a Rink amide resin, 0.45 mmol/g [Fmoc-Cys(Trityl)-Wang; Novabiochem, San Diego, Calif.] usinig N-(9-fluorenyl)methoxycarboxyl chemistry and standard side chain protection except on cysteine residues. Cysteine residues were protected in pairs with either S-trityl on the first and third cysteines or S-acetamidomethyl on the second and fourth cysteines. Amino acid derivatives were from Advanced Chemtech (Louisville, Ky.). The peptides were removed from the resin and precipitated, and a two-step oxidation protocol was used to selectively fold the peptides as described previously (Luo et al., 1999). Briefly, the first disulfide bridge was closed by dripping the peptide into an equal volume of 20 mM potassium feliicyanide and 0.1 M Tris, pH 7.5. The solution was allowed to react for 30 min, and the monocyclic peptide was purified by reverse-phase HPLC. Simultaneous removal of the S-acetamidomethyl groups and closure of the second disulfide bridge was carried out by iodine oxidation. The monocyclic peptide and HPLC eluent was dripped into an equal volume of iodine (10 mM) in H20/trifluoroacetic acid/acetonitrile (78:2:20 by volume) and allowed to react for 10 min. The reaction was terminated by the addition of ascorbic acid diluted 20-fold with 0.1percent trifluoroacetic acid and the bicyclic product purified by HPLC. Mass Spectrometry: Measurements were performed at the Salk Institute for Biological Studies (San Diego, Calif.) under the direction of Jean Rivier. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and liquid secondary ionization mass spectrometry were used.
  • 4
  • [ 35661-40-6 ]
  • [ 71989-18-9 ]
  • [ 125238-99-5 ]
  • [ 135673-97-1 ]
  • N-[(9-fluorenyl)methoxycarbonyl]-4-chloro-L-phenylalanine [ No CAS ]
  • [ 1186310-44-0 ]
  • 5
  • [ 71989-18-9 ]
  • [ 132684-59-4 ]
  • [ 77284-32-3 ]
  • [ 135112-28-6 ]
  • [ 125238-99-5 ]
  • N-(9-fluorenylmethoxycarbonyl)-3-(β-naphthyl)-L-alanine [ No CAS ]
  • [ 1349220-85-4 ]
  • 6
  • C33H34N3O5Pol [ No CAS ]
  • [ 29022-11-5 ]
  • [ 35661-39-3 ]
  • [ 122889-11-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-35-0 ]
  • [ 109425-51-6 ]
  • His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Ser(OBn)-[2-amino-3-(biphenyl-4-yl)propanoyl]-NH2 [ No CAS ]
  • 7
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 108-24-7 ]
  • [ 71989-23-6 ]
  • [ 71989-16-7 ]
  • [ 91000-69-0 ]
  • [ 198561-07-8 ]
  • C57H93N17O22 [ No CAS ]
  • 8
  • [ 35661-39-3 ]
  • [ 1356004-85-7 ]
  • [ 71989-18-9 ]
  • [ 71989-26-9 ]
  • [ 198561-07-8 ]
  • [ 1421510-90-8 ]
  • 9
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-77-8 ]
  • 10
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 35661-39-3 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-82-5 ]
  • 11
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • [ 1628113-76-7 ]
  • 12
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • octyl-D-Val-D-Ala-Gly-D-Ser-D-Trp-Ser-Dab-D-Dab-Phe-Glu-Val-D-allo-Ile-Ala-OH [ No CAS ]
  • 13
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • octyl-D-Val-D-Dab-Gly-D-Ser-D-Trp-Ser-Dab-D-Ala-Phe-Glu-Val-D-allo-Ile-Ala-OH [ No CAS ]
  • 14
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-75-6 ]
  • 15
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • octyl-D-Ala-D-Dab-Gly-D-Ser-D-Trp-Ser-Dab-D-Dab-Phe-Glu-Val-D-allo-Ile-Ala-OH [ No CAS ]
  • 16
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1542148-60-6 ]
  • 17
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 35661-40-6 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-74-5 ]
  • 18
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-40-6 ]
  • [ 71989-18-9 ]
  • [ 35661-38-2 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-83-6 ]
  • 19
  • Fmoc-Ala-O-Wang resin [ No CAS ]
  • [ 124-07-2 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 118904-37-3 ]
  • [ 71989-18-9 ]
  • [ 73724-45-5 ]
  • [ 73724-45-5 ]
  • [ 125238-99-5 ]
  • [ 84624-17-9 ]
  • N-α-(9-fluorenylmethyloxycarbonyl)-N-γ-tert-butyloxycarbonyl-D-2,4-diaminobutyric acid [ No CAS ]
  • Protected D-Trp derivative [ No CAS ]
  • [ 1628113-80-3 ]
  • 20
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 112883-29-1 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 35737-15-6 ]
  • [ 71989-35-0 ]
  • [ 71989-16-7 ]
  • [ 105047-45-8 ]
  • [ 77128-73-5 ]
  • [ 104090-92-8 ]
  • [ 1620146-28-2 ]
  • 21
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C66H94N20O21S [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 22
  • [ 79598-53-1 ]
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C72H105N21O22S [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 23
  • [ 29022-11-5 ]
  • Fmoc-F2Pmp-OH [ No CAS ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C67H95F2N20O23PS [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 24
  • [ 79598-53-1 ]
  • [ 29022-11-5 ]
  • Fmoc-F2Pmp-OH [ No CAS ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 58-85-5 ]
  • [ 198561-07-8 ]
  • C73H106F2N21O24PS [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: 4.1.1. Peptide synthesis; 4.1.2; Solid-phase peptide synthesis (SPPS) was performed with standardFmoc chemistry on rink amide resin using an automated peptidesynthesizer (Syro I, Multisyntech). The resin was loaded into a5 mL reactor with a frit at the bottom. Swelling was performed bydispensing 1 mL DMF and incubating for 15 min (2) with 10 sshaking every minute. Fmoc deprotection was achieved by treatmentwith 40percent piperidine DMF for 3 min and 20percent piperidine inDMF for 12 min (10 s/min shaking). Peptide couplings were carriedout by double couplings with Fmoc-protected amino acids(5 equiv), HBTU (5 equiv), HOBt (5 equiv) and DIPEA (10 equiv) inDMF for 40 min (10 s/min shaking). At the respective position,Fmoc-F2Pmp-OH (3 equiv) was coupled in DMF (1 mL) by manualaddition using TBTU (3 equiv), HOBt (3 equiv) and DIPEA (6 equiv)for 3 h, after 3 min preactivation. In case of the sequences for which side-chain labeling with biotinor carboxyfluorescein was planned, an additional 4-methyltrityl-(Mtt-) protected lysine was coupled to the N-terminus. Toselectively remove the Mtt group the resin was washed for 1 minwith DCM (3), deprotection was then achieved by treatment with1.8percent TFA in DCM for 3 min (10). During the deprotection the DCMsolution turned yellow.For fluorescein-labeling of the amine side-chain 5(6)-carboxyfluorescein(3 equiv), HATU (3 equiv), HOAt (3 equiv) andDIPEA (6 equiv) were dissolved in DMF and pre-activated for3 min. The solution was aspirated and coupling was allowed toproceed for 1 h. This step was repeated 4 times.For biotin-labeling of the amine side-chain the resin waswashed for 1 min in NMP (3). D-(+)-Biotin (3 equiv), HATU(3 equiv), HOAt (3 equiv) and DIPEA (6 equiv) were dissolved inNMP and pre-activated for 3 min. The solution was aspirated andcoupling was allowed to proceed for 2 h. This step was repeated2 times. N-terminal acetylation (where applicable) was achieved by dispensing800 lL of a mixture of acetic anhydride/pyridine (1:9) andreaction twice for 5 min (10 s/min shaking). After each deprotection,coupling or acetylation step, 5 washings (1 min each) withDMF were performed (10 s/min shaking).After synthesis the resin was transferred in a 5 mL syringeequipped with a frit, washed with DCM for 1 min (3) and driedin high vacuum for at least 30 min. For cleavage 1 mL of a mixtureof TFA and TIS (20:1) was added. The syringe with the mixture waskept on a shaker for 3 h. Then the liquid phase was filtered into20 mL of ice-cold Et2O. Formed precipitate was centrifuged,washed with ice-cold Et2O (2 20 mL) and purified by HPLC. 4.1.2. Azide functionalization of the N-terminus; To the peptides with the longer carbon linker, 6-azidohexanoicacid was coupled (with standard coupling conditions) to the Nterminalamine.The N-terminal amine of the peptides with the shorter linkerwas converted to an azide functionality directly on solid support.Using the compound imidazole-1-sulfonyl-azide*HCl (synthesissee beneath) and modified conditions, which were reported forsolution phase chemistry from Goddard?Borger and Stick:8 Theresin was washed for 1 min each with DCM (2), DCM/MeOH(2) and MeOH (3). Then (for 40 mg resin, loading= 0.62 mmole/g) 1.4 equiv of imidazole-1-sulfonyl-azide*HClin 1 mL MeOH and 100 ll of a saturated and centrifuged solutionof CuSO4*5H2O was added. After 1 min, DIPEA (1.8 equiv) wasadded and the coupling was allowed to proceed for 1 h andrepeated once more with an intermediate washing with MeOH(3 1 min).
  • 25
  • [ 1026023-54-0 ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 556-08-1 ]
  • [ 71989-26-9 ]
  • [ 103213-32-7 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 109425-51-6 ]
  • [ 116821-47-7 ]
  • [ 198561-07-8 ]
  • [ 334918-39-7 ]
  • C128H218N50O36 [ No CAS ]
  • 26
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Boc-His(Trt)-Gly-Asp(tBu)-Gly-OH [ No CAS ]
  • [ 35661-40-6 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 132388-59-1 ]
  • [ 132327-80-1 ]
  • [ 96402-49-2 ]
  • [ 77284-32-3 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • Fmoc-Thr(Pg)-OH [ No CAS ]
  • Fmoc-Ser(Pg)-OH [ No CAS ]
  • C160H237N41O47 [ No CAS ]
  • 27
  • Fmoc-N-methyl norleucine [ No CAS ]
  • [ 29022-11-5 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 103213-32-7 ]
  • [ 84000-07-7 ]
  • [ 132388-59-1 ]
  • [ 109425-51-6 ]
  • [ 79-11-8 ]
  • [ 125238-99-5 ]
  • [ 143824-78-6 ]
  • [ 203866-20-0 ]
  • C89H123ClFN23O20S [ No CAS ]
YieldReaction ConditionsOperation in experiment
Single-Coupling Procedure To the reaction vessel containing resin from the previous step was added piperidine:DMF (20:80 v/v, 2.0mL). The mixture was periodically agitated for 3 minutes and then the solution was drained through the frit.To the reaction vessel was added piperidine:DMF (20:80 v/v, 2.0 mL). The mixture was periodically agitatedfor 3 minutes and then the solution was drained through the frit. The resin washed successively six times asfollows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and theresulting mixture was periodically agitated for 30 seconds before the solution was drained through the frit. Tothe reaction vessel was added the amino acid (0.2M in DMF, 1.0 mL, 2 eq), then HATU (0.2M in DMF, 1.0mL, 2 eq), and finally DIPEA (0.4M in DMF, 1.0 mL, 4 eq). The mixture was periodically agitated for 15minutes, then the reaction solution was drained through the frit. The resin washed successively four times asfollows: for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and theresulting mixture was periodically agitated for 30 seconds before the solution was drained through the frit. Tothe reaction vessel was added acetic anhydride (2.0 mL). The mixture was periodically agitated for 10minutes, then the solution was drained through the frit. The resin washed successively four times as follows:for each wash, DMF (2.0 mL) was added to top of the vessel (not through the bottom frit) and the resultingmixture was periodically agitated for 90 seconds before the solution was drained through the frit. Theresulting resin was used directly in the next step.
  • 28
  • [ 64987-85-5 ]
  • [ 29022-11-5 ]
  • [ 71989-18-9 ]
  • ZJ-MCC-Ahx-dEdEdEG [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: The peptide Fmoc-Ahx-dGlu-dGlu-dGlu-G was assembled on a Wang resin. The three glutamates (dGlu) are of D-isoform. Peptide synthesis was carried out manually by Fmoc chemistry with HCTU (2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate) activation. Generally, peptides were synthesized at a 0.01 mmol scale starting from the C-terminal amino acid on solid support. Fmoc-deprotection at each cycle was carried out using 20percent piperidine in DMF. Coupling reactions were carried out using 3.3 eq. of Fmoc-amino acids in DMF activated with 3.3 eq. of HCTU and 5 equivalents of diisopropylethylamine (DIPEA) in DMF. These steps were repeated each time with an amino acid added. After the peptide sequence was built on the resin, the Fmoc group of the N-terminal amino acid was deprotected. Coupling of 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to the N-terminal amine group was achieved with 3.3 equivalents of SMCC in DMF. Coupling of Cys-C(O)-Glu was performed using 3.3 equivalents of Cys-C(O)-Glu in DMF after coupling SMCC to the peptide. The final peptide resin was washed with DMF and then dichloromethane and dried. Cleavage and deprotection were carried out using TFA/water/triisopropylsilane (950:25:25) for 1 h, the resin was removed by filtration and washed with TFA. The combined filtrate was dried under nitrogen. The synthesized peptide was precipitated by the addition of diethyl ether and collected by centrifugation. The cleaved peptide was purified by preparative HPLC. The products were ascertained by high resolution matrix-assisted laser desorption/ionization mass (MALDI-MS) spectra. Then Fmoc was deprotected followed by coupling of SMCC and Cys-C(O)-Glu. The product has retention time of 11.9 minutes on analytical HPLC with 0-55percent gradient over 45 minutes (flow rate 1 ml/min; A: 10 mM triethylammonium acetate TEAA, pH 7.0; B was acetonitrile.) The mass was verified by MALDI/TOF mass spectrometry?Calculated: 1088.4 (C44H64N8O22S). Found m/z: 1089.4 (M+1).
  • 29
  • [ 64987-85-5 ]
  • [ 112883-29-1 ]
  • [ 84793-07-7 ]
  • [ 71989-18-9 ]
  • [ 105047-45-8 ]
  • [ 180839-17-2 ]
  • Fmoc-‘E-Amc-Ahx-dGlu-dGlu-dGlu-Tyr-Lys-NH2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
Fmoc-?E-Amc-Ahx-dGlu-dGlu-dGlu-Tyr-Lys-NH2 (SEQ ID NO: 14) was assembled on the resin using standard Fmoc peptide synthesis. The glutamates (dGlu) are D-isomers. Fmoc-?E stands for Fmoc(Glu)-OtBu where the gamma-carboxyl group is unprotected. The last Fmoc on the assembled peptide is then removed by 20percent piperidine. Then a chloroform solution containing 5 eq. of H-Glu(OtBu)-OtBu mixed with 2.5 eq (with respect to H-Glu(OtBu)-OtBu) of diisopropylethylamine was prepared. The solution was then added slowly to 0.25 eq (with respect to H-Glu(OtBu)-OtBu) triphosgene in chloroform over 10 minutes at room temperature. After a 15 minute incubation to allow for isocyanate formation, the reaction is mixed with the ?E-Amc-Ahx-Glu-Glu-Glu-Gly-Tyr-Gly-Gly-Gly-Cys-NH2 (SEQ ID NO: 13) on a rink amide resin pre-swollen in chloroform with 2.5 eq of diisopropylethylamine. After 30 minutes of mixing, a Ninhydrin test was administered to test for residual free-amine on the resin. The reaction was repeated if needed. Once the reaction is complete, the resin is washed and the complete peptide product is cleaved. To couple the purified peptide E?EAmc-Ahx-EEEYK(Bn-NOTA)-NH2 (SEQ ID NO: 15) with SCN-Bn-NOTA (Macrocyclics), E?EAmc-Ahx-dEdEdEYK (SEQ ID NO: 16) was dissolved in DMF at a concentration of 25 mg/mL and an equimolar amount of SCN-Bn-NOTA was dissolved in DMSO at a concentration of 200 mg/mL. After mixing the above DMF and DMSO solutions of the reactants, DIPEA was added to concentration of 2percent v/v. The reaction was monitored by HPLC and allowed to proceed up to 2 hours. Then, glacial acetic acid equivolume to DIPEA is added to stop the reaction. The final product was E?EAmc-Ahx-dGlu-dGlu-dGlu-Tyr-Lys(Bn-NOTA)-NH2 (compound 4) (SEQ ID NO: 8) The product elutes at 14.8 min on an analytical column with a 10percent-90percent gradient in 45 minutes with a flow rate of 0.8 ml/min (A: water with 0.1percent TFA; B: acetonitrile). The mass was verified by MALDI/TOF mass spectrometry?Calculated: 1699.7. found m/z: 1700.7 (M+1).
  • 30
  • [ 4530-20-5 ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-39-3 ]
  • [ 71989-31-6 ]
  • [ 71989-18-9 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132388-59-1 ]
  • [ 77128-73-5 ]
  • [ 143824-78-6 ]
  • [ 1620146-28-2 ]
YieldReaction ConditionsOperation in experiment
21% General procedure: Solid-phase peptide synthesis was carried out on Fmoc-cappedpolystyrene rink amide MBHA resin (100-200 mesh, 0.05-0.15 mmol scale). The following amino acidderivatives suitable for Fmoc SPPS were used: Fmoc-Cys(Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(tBu)-OH,Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Pro-OH, Fmoc-Thr(tBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Val-OH, Fmoc-aPhe-OH, Fmoc-aVal-OH,Fmoc-aTyr(tBu)-OH, Fmoc-(N-Me)-Phe-OH, Fmoc-D-Ser(TBS)-OH, Fmoc-D-hSer(TBS)-OH, Boc-Gly-OH. Dry resin was washed with DMF 3x and allowed to swell in DMF for 2 h prior to use. Allreactions were carried out using gentle agitation. Fmoc deprotection steps were carried out by treating theresin with a solution of 20percent piperidine/DMF (15 min x 2). Coupling of Fmoc-protected amino acids aswell as (N2-Boc)-hydrazino acids was effected using 5 equiv. HATU (0.5 M in DMF), 10 equiv. DIEA(1.0 M in DMF), and 5 equiv. of the carboxylic acid in DMF at 50 oC (1 h). Coupling of residues Nterminalto the hydrazino acids was carried out with 30 equiv. collidine and 10 equiv. of pre-formed Fmocamino acid chlorides (or 10 equiv. of Fmoc amino acids with 3.3 equiv. triphosgene) in THF at rt (1 h x2).3 After each reaction the resin was washed with DMF 2x, DCM 1x, then DMF 1x. Peptides undergoingMitsunobu reactions were capped with Boc-Gly-OH, washed with DCM 3x, and treated with 5 equiv.TBAF in THF for 3 h at rt. After the reaction the resin was washed with DCM 3x and then treated with 5equiv. triphenylphosphine in THF followed by 5 equiv. of DIAD, then strirred overnight at rt. Peptideswere cleaved from the resin by incubating with gentle stirring in 2 mL of 95:5 TFA:H2O at rt for 2 h. Thecleavage mixture was filtered and the resin was rinsed with an additional 1 mL of cleavage solution. Thefiltrate was treated with 8 mL of cold Et2O to induce precipitation. The mixture was centrifuged and thesupernatant was removed. The remaining solid was washed 2 more times with Et2O and dried undervacuum. Cysteine-containing peptides were purified, lyophilized, dissolved in 10mM phosphate buffer(pH 8.9, 5percent v/v DMSO), stirred until analytical HPLC and MS showed complete conversion to the cyclicdisulfide (1-2 d), and then repurified. Peptides were analyzed and purified on C12 RP-HPLC columns(preparative: 4mu, 90A, 250 x 21.2 mm; analytical: 4mu, 90A, 150 x 4.6 mm) using linear gradients ofMeCN/H2O (with 0.1percent formic acid), then lyophilized to afford white powders. All peptides werecharacterized by LCMS (ESI), HRMS (ESI-TOF), and 1H NMR. Analytical HPLC samples for all purifiedpeptides were prepared as 1 mM in H2O containing 20 mM phosphate buffer at pH 7.0. Linear gradientsof MeCN in H2O (0.1percent formic acid) were run over 20 minutes and spectra are provided for lambda = 220 nm.
  • 31
  • [ 71989-18-9 ]
  • [ 100986-85-4 ]
  • [ 125238-99-5 ]
  • C33H42FN7O12 [ No CAS ]
  • 32
  • [ 71989-18-9 ]
  • [ 100986-85-4 ]
  • [ 125238-99-5 ]
  • C38H49FN8O15 [ No CAS ]
  • 33
  • [ 71989-18-9 ]
  • [ 100986-85-4 ]
  • [ 125238-99-5 ]
  • C28H35FN6O9 [ No CAS ]
  • 34
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 108-24-7 ]
  • [ 71989-23-6 ]
  • [ 103213-32-7 ]
  • [ 143824-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • [ 198561-07-8 ]
  • acetyl-RLIEDICLPRWGCLWEDDX-NH2 [ No CAS ]
 

Historical Records

Technical Information

Categories