*Storage:
*Shipping:
4.5
*For Research Use Only !
Change View
Size | Price | US Stock | Global Stock | In Stock |
1g | łÇʶÊÊ | Inquiry | Inquiry | |
5g | łÇ˶ÊÊ | Inquiry | Inquiry | |
10g | łÇÿ¶ÊÊ | Inquiry | Inquiry | |
25g | łËÿ¶ÊÊ | Inquiry | Inquiry | |
100g | łîî¶ÊÊ | Inquiry | Inquiry | |
500g | łÍîͶÊÊ | Inquiry | Inquiry |
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
łÇʶÊÊ
łÇ˶ÊÊ
łÇÿ¶ÊÊ
łËÿ¶ÊÊ
łîî¶ÊÊ
łÍîͶÊÊ
In Stock
- +
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Development of reactive oxygen species (ROS) inhibitors and prodrugs for multiple applications
Senevirathne, Priyangika Prasadini ;
Abstract: Reactive oxygen species are a group of highly reactive oxygen-containing entities that are important at a cellular level for multiple biological processes. Low concentrations of ROS can be beneficial as powerful signaling molecules in those biological processes, although excessive concentrations can promote high levels of DNA damage and a variety of diseases such as skin cancer. A newly identified intracellular ROS production source in skin cells is NADPH oxidases. Out of the NOX enzyme family, the NOX1 holoenzyme is most abundantly expressed in the human keratinocyte cells. UV radiation can trigger the activation of NOX1 isoforms which stimulate the assembling of member CYBA and the cytoplasmic protein NOXO1. Inhibition of these enzymes represents a catalytic approach toward reducing ROS for the prevention of ROS inducible diseases. Key disease states include melanoma induced by UV exposure. The first half of the dissertation focuses on investigating new small molecule inhibitors of a key NOX1 holoenzyme to address these challenges. We designed a series of molecules by optimizing the structure of diapocynin and evaluated by in-silico docking methods to determine the binding affinity with NOXO1 cytoplasmic protein (1WLP crystal structure). And have synthesized the series of target molecules for the structure-activity relationship studies. In the first section of the project, we discovered that inhibitor NOX_inh_5 was not cytotoxic, but instead improved the viability of human primary cells from UV exposure, decreased the cellular stress in human skin through the p53 pathway, and reduced the UV-induced DNA damage as monitored by quantification of cyclobutane dimer formation after UV exposure. Then, we characterized the inhibition potential of NOX_inh_5 by using an Isothermal calorimetric (ITC) binding assay and heteronuclear single quantum coherence (HSQC) technique and revealed that the candidate iii molecule can prevent the complex formation of NOXO1 and CYBA membrane protein. In the second section of the project, we did a structure-activity relationship study for the NOX_inh_5 small molecule to optimize the biological characteristics. The last section of the dissertation discussed the development of ROS sensible prodrug to combat the opioid overdose crisis. Here we used oxidative stress conditions caused by opioid overdose to activate the prodrug. Even though opioid antagonist naloxone has a high affinity to bind with opioid receptors to block opioid-induced activation, it is metabolically unstable and has a short half-life of around 33 min. We developed a peroxide-induced prodrug to overcome this issue that can release a steady stream of naloxone. This allows the concentration of naloxone to remain high for longer periods.
Show More >
Purchased from AmBeed: 1007-16-5 ; 111-24-0 ; 14221-01-3 ; 99769-19-4 ; 351422-73-6 ; 158407-04-6 ; 1462-37-9 ; 583-61-9 ; 13965-03-2 ; 455-85-6 ; 148893-10-1
Show More >
CAS No. : | 99769-19-4 |
Formula : | C8H9BO4 |
M.W : | 179.97 |
SMILES Code : | C1=C(C=CC=C1C(OC)=O)B(O)O |
Synonyms : |
3-(Methoxycarbonyl)phenylboronic acid
|
MDL No. : | MFCD02093046 |
InChI Key : | ALTLCJHSJMGSLT-UHFFFAOYSA-N |
Pubchem ID : | 2734714 |
GHS Pictogram: | ![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With pyridine;copper diacetate; In chloroform; at 20℃; for 72h; | 1) Production of methyl 3-[2-allyl-6-(methylthio)-3-oxo-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-1-yl]benzoate 20 mL of pyridine was added to a chloroform solution of 7.5 g of <strong>[955368-90-8]2-allyl-6-(methylthio)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-one</strong>, 6.1 g of copper(II) acetate and 10 g of [3-(methoxycarbonyl)]phenylboronic acid, and stirred at room temperature for 3 days. Aqueous 30% ammonia solution and saturated saline water were added to the reaction liquid in that order, and extracted with chloroform. The organic layer was washed with saturated saline water, then dried with anhydrous magnesium sulfate, and the solvent was evaporated away. The crude product was purified through silica gel column chromatography (hexane/ethyl acetate) to obtain 6.7 g of methyl 3-[2-allyl-6-(methylthio)-3-oxo-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-1-yl]benzoate as a yellow oily substance. 1H-NMR (400 MHz, CDCl3) delta: 8.92 (1H, s), 8.11-8.06 (2H, m), 7.65-7.59 (2H, m), 5.68 (1H, ddd, J=17.1, 10.2, 5.9 Hz), 5.13 (1H, dd, J=10.2, 1.0 Hz), 4.97 (1H, dd, J=17.1, 1.0 Hz), 4.45 (2H, d, J=5.9 Hz), 3.96 (3H, s), 2.51 (3H, s). | |
With pyridine;copper diacetate; In chloroform; at 20℃; for 72h; | Production Example 11 Production of methyl 3-[2-allyl-6-(methylthio)-3-oxo-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-1-yl]benzoate Pyridine (20 mL) was added to a chloroform solution of <strong>[955368-90-8]2-allyl-6-(methylthio)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-one</strong> (7.5 g), copper(II) acetate (6.1 g) and [3-(methoxycarbonyl)]phenylboronic acid (10 g), and stirred at room temperature for 3 days. Aqueous 30 % ammonia solution and saturated saline water were added to the reaction liquid in order, and extracted with chloroform. The organic layer was washed with saturated saline water, dried with anhydrous magnesium sulfate, and the solvent was evaporated away. The crude product was purified through silica gel column chromatography (hexane/ethyl acetate) to give methyl 3-[2-allyl-6-(methylthio)-3-oxo-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-1-yl]benzoate as a yellow oil (6.7 g). 1H-NMR (400 MHz, CDCl3) delta: 8.92 (1H, s), 8.11-8.06 (2H, m), 7.65-7.59 (2H, m), 5.68 (1H, ddt, J = 17.1, 10.2, 5.9 Hz), 5.13 (1H, dd, J = 10.2, 1.0 Hz), 4.97 (1H, dd, J = 17.1, 1.0 Hz), 4.45 (2H, d, J = 5.9 Hz), 3.96 (3H, s), 2.51 (3H, s). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
61% | With caesium carbonate;(1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; In 1,4-dioxane; water; at 105℃; for 3h;Inert atmosphere; | Example 28 Synthesis of methyl 3-(5-acetylfuran-2-yl)benzoate To a solution of <strong>[3199-50-6]1-(5-bromofuran-2-yl)ethanone</strong> (2 g, 10.58 mmol) and cesium carbonate (10.35 g, 31.74 mmol in water/dioxane (5%, 20 mL), flushed with nitrogen for 15 minutes, was added 3-methoxycarbonylphenyl boronic acid (2.09 g, 11.64 mmol), followed by catalyst PdCl2(dppf) (379 mg, 0.519 mmol). The solution was heated to reflux (105 C.) under nitrogen, for 3 hours. Water (100 mL) was added to the mixture after cooling down to rt. Filtration gave 2.56 g of a black crude material. Purification via silica column chromatography eluding with dichloromethane gave methyl 3-(5-acetylfuran-2-yl)benzoate (1.58 g, 6.19 mmol, 61% yield) as a yellow solid. LCMS (ES): m/z 245 [M+1]+. |
49% | With potassium phosphate; palladium diacetate; CyJohnPhos; In toluene; at 90℃;Inert atmosphere; | A mixture of <strong>[3199-50-6]1-(5-bromofuran-2-yl)ethanone</strong> (24, 1.57g, 8.3mmol), 3-(methoxycarbonyl)phenylboronic acid (23c, 1.71g, 9.5mmol), (2-biphenyl)dicyclohexylphosphine (0.29g, 0.83mmol) and K3PO4 (7.10g, 33.5mmol) was suspened in toluene (36mL) under argon for 20min. Then Pd(OAc)2 (114.5mg, 0.51mmol) was added, and the resulting suspension was heated to 90C and stirred under argon overnight in a sealed tube. After cooling down, the solvent was evaporated. The crude residue was further purified by silica gel column chromatography, eluting with hexane-ethyl acetate 8:2, to provide the product as light yellow solid (1.00g, 49%): mp 117-118C. 1H NMR (300MHz, CDCl3) delta 8.38 (t, J=1.5Hz, 1H), 8.01-7.93 (m, 2H), 7.49 (t, J=7.8Hz, 1H), 7.25 (d, J=3.6Hz, 1H), 6.84 (d, J=3.6Hz, 1H), 3.93 (s, 3H), 2.52 (s, 3H); 13C NMR (75MHz, CDCl3) delta 186.3, 166.4, 156.4, 152.1, 130.9, 129.9, 129.6, 129.0, 128.9, 125.9, 119.3, 108.2, 52.3, 26.0. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
53% | With potassium phosphate;dichloro(1,1'-bis(diphenylphosphanyl)ferrocene)palladium(II)*CH2Cl2; In 1,4-dioxane; N,N-dimethyl-formamide; at 85℃;Inert atmosphere; | (1) 1,1'-Bis(diphenylphosphino)ferrocene-palladium(II) dichloride-dichloromethane complex (272 mg, 0.33 mmol), 3-methoxycarbonylphenylboronic acid (898 mg, 4.99 mmol), and tripotassium phosphate (1.41 g, 6.64 mmol) were added to a solution of commercially available 5-bromothiophene-2-sulfonamide (805 mg, 3.33 mmol) in mixture of 1,4-dioxane (10 mL) and DMF (1 mL), followed by stirring at 85C overnight in an argon atmosphere. The reaction solution was concentrated. A saturated aqueous solution of sodium chloride was added to the residue, followed by extraction with methylene chloride and drying over anhydrous sodium sulfate. The solvent was distilled off, and methanol was added to the residue. The precipitated solid was filtered off. The residue obtained by distilling the solvent off was subjected to purification by silica gel column chromatography to obtain 3-(5-sulfamoyl-2-thienyl)benzoic acid methyl ester (529 mg, 1.78 mmol) (yield: 53%). ES-MS (m/z): 296 (M-H)-. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
92.9% | With dicyclohexyl-(2',6'-dimethoxybiphenyl-2-yl)-phosphane; potassium phosphate; palladium diacetate; at 80℃; for 2h;Sealed tube; Inert atmosphere; | A microwave reaction vessel was charged with (3-(methoxycarbonyl)phenyl)boronic acid(540 mg, 3 mmol), <strong>[1483-55-2]2-bromo-5-(trifluoromethyl)benzonitrile</strong> (500 mg, 2 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (82 mg, 0.2 mmol), potassium phosphate tribasic (1.27 g, 6 mmol) and palladium(II) acetate (22.5 mg, 0.1 mmol) and was sealed. It was put under vacuum and filled with argon (3x repeated). Then the degassed toluene was added and the suspension was stirred at 80C for 2 hours. The reaction mixture was then allowed to cool to room temperature, diluted with 5 ml EtOAc and filtered through a thin bed of silica (0.3-0.5 mm) and eluted/washed with EtOAc (ca. 40 ml) and concentrated under reduced pressure. After Si02 flash chromatography, methyl 2'-cyano-4'-(trifluoromethyl)-[1,1'-biphenyl]-3-carboxylate was obtained as a off-white, crystalline solid (567 mg, 92.9%). MS (ESI): m/z = 306.2 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
73.8% | With dicyclohexyl-(2',6'-dimethoxybiphenyl-2-yl)-phosphane; potassium phosphate; palladium diacetate; In water; toluene; at 6.0℃; for 110.0h; | To a solution of (3-(methoxycarbonyl)phenyl)boronic acid (324 mg, 1.8 mmol, Eq: 1.5) in toluene (5 mL) and water (500 muEpsilon) was added <strong>[35764-15-9]2-bromo-4-(trifluoromethyl)benzonitrile</strong> (300 mg, 1.2 mmol, Eq: 1) and SPhos (49.3 mg, 120 muiotaetaomicron, Eq: 0.1) and potassium phosphate tribasic anhydrous (764 mg, 3.6 mmol, Eq: 3) and palladium(II) acetate (13.5 mg, 60 muiotaetaomicron, Eq: 0.05). The reaction mixture was stirred for 6 hours at 110C.The reaction mixture was poured on 30 mL 10% aqueous NaHC03 solution and 30 mL EtOAc and the layers were separated. The aqueous layer was extracted a second time with 30 mL EtOAc. The organic layers were washed with 30 mL brine, dried over MgS04, filtered and concentrated under vacuum.The residue was purified by silica gel chromatography to yield methyl 3-[2-cyano-5-(trifluoromethyl)phenyl]benzoate (338 mg, 73.8%). GCMS (EI): m/z = 305.1 [M+H]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With tetrakis(triphenylphosphine) palladium(0); sodium carbonate; In 1,4-dioxane; at 80℃; for 16h;Inert atmosphere; | 3.69 g (5.25 mmol) of hexabromobenzophenanthrene, 8.51 g (47.3 mmol) of 4-methoxycarbonylbenzeneboronic acid,5.01 g (47.3 mmol) sodium carbonate, 0.60 g (0.517 mmol) tetrakistriphenylphosphine palladium,75mL 1,4-dioxane was added to a 500mL three-necked bottle, sealed, vacuumed, and protected by nitrogen.The reaction was carried out at 80 C for 16 hours. After the reaction stops,The crystals are allowed to stand, and dried by filtration to obtain 3,3',3",3"',3"",3""'-(triphenylene-2,3,6,7,10,11-hexa)hexabenzene Formate 4.7 g, yield 81%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: Step 1: Bromobenzene derivatives 20a-b (1.0 equiv), 21a (1.3 equiv) , Pd(PPh3)4 (0.03 equiv) and Na2CO3 (3 equiv) were dissolved in toluene: ethanol: H2O = 3: 1: 3 and then nitrogen is replaced three times at 80 C for 12 h. and then cooled to room temperature. The mixture was poured into 50mL H2O, a one third volume of ethyl acetate was added, and phases were separated. The aqueous layer was extracted three times with ethyl acetate, the combined organic layers were dried over Na2SO4, and solvent was evaporated in vacuum. Further purification was performed by column chromatography using ether/ethyl acetate as mobile phase to get 23a-b. The product was precipitated by addition of 2 M HCl until a pH of ≤ 2 was reached, filtered off, and dried in vacuum to get 22a-b. |
Tags: Methyl 3-boronobenzoate | 3-(Methoxycarbonyl)phenylboronic acid | Organoboron | Aryls | Esters | Boronic Acids | Ketones | Organic Building Blocks | Boronic Acids/Esters | Organometallic Reagents | 99769-19-4
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL