Structure of 4-Pentyn-1-ol
CAS No.: 5390-04-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 5390-04-5 |
Formula : | C5H8O |
M.W : | 84.12 |
SMILES Code : | C#CCCCO |
MDL No. : | MFCD00002974 |
InChI Key : | CRWVOXFUXPYTRK-UHFFFAOYSA-N |
Pubchem ID : | 79346 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 6 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.6 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 25.47 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.23 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.58 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.48 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.47 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.01 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.68 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.84 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.53 |
Solubility | 24.7 mg/ml ; 0.294 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.47 |
Solubility | 28.2 mg/ml ; 0.336 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-0.49 |
Solubility | 27.1 mg/ml ; 0.322 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.47 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.29 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84% | With copper(l) iodide; palladium 10% on activated carbon; triethylamine; triphenylphosphine; In 1,4-dioxane; at 25 - 80℃; for 3.5h;Inert atmosphere; | General procedure: (a) The reaction was performed in a bigger scale using 100 mg of 10% Pd/C (0.092 mmol), PPh3 (0.37 mmol), CuI (0.184 mmol), Et3N (10.68 mmol), compound 1a (3.56 mmol), and acetylenic compound 2a (5.32 mmol) in 1,4-dioxane (20.0 mL). After stirring at 80 C for 3 h under nitrogen the mixture was cooled to room temperature. The Pd/C was filtered off and washed with water (2 10 mL), acetone (2 10 mL), and EtOAc (2 10 mL). Then the catalyst was collected, dried at 100 C in an oven, and reused for the next run. The co-catalyst CuI along with PPh3 was added in every repeated run. (b) General method for the preparation of 3: A mixture of compound 1 (0.89 mmol), 10% Pd/C (0.023 mmol), PPh3 (0.092 mmol), CuI (0.046 mmol), and Et3N (2.67 mmol) in 1,4-dioxane (5.0 mL) was stirred at 25 C for 30 min under nitrogen. The acetylenic compound 2 (1.33 mmol) was added slowly with stirring. The mixture was then stirred at 80 C for 3 h, cooled to room temperature, diluted with EtOAc (30 mL), and filtered through celite. The filtrate was collected and concentrated. The residue was purified by column chromatography (2-15% EtOAc/hexane) to afford the desired product |
80% | With copper(l) iodide; palladium 10% on activated carbon; triethylamine; triphenylphosphine; In 1,4-dioxane; at 25 - 80℃; for 3.5h;Inert atmosphere; | General procedure: (a) The reaction was performed in a bigger scale using 100 mg of 10% Pd/C (0.092 mmol), PPh3 (0.37 mmol), CuI (0.184 mmol), Et3N (10.68 mmol), compound 1a (3.56 mmol), and acetylenic compound 2a (5.32 mmol) in 1,4-dioxane (20.0 mL). After stirring at 80 C for 3 h under nitrogen the mixture was cooled to room temperature. The Pd/C was filtered off and washed with water (2 10 mL), acetone (2 10 mL), and EtOAc (2 10 mL). Then the catalyst was collected, dried at 100 C in an oven, and reused for the next run. The co-catalyst CuI along with PPh3 was added in every repeated run. (b) General method for the preparation of 3: A mixture of compound 1 (0.89 mmol), 10% Pd/C (0.023 mmol), PPh3 (0.092 mmol), CuI (0.046 mmol), and Et3N (2.67 mmol) in 1,4-dioxane (5.0 mL) was stirred at 25 C for 30 min under nitrogen. The acetylenic compound 2 (1.33 mmol) was added slowly with stirring. The mixture was then stirred at 80 C for 3 h, cooled to room temperature, diluted with EtOAc (30 mL), and filtered through celite. The filtrate was collected and concentrated. The residue was purified by column chromatography (2-15% EtOAc/hexane) to afford the desired product |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
78% | at 120℃; for 0.333333h;Sealed tube; Microwave irradiation; | General procedure: The 4-substituted methyl (phenylsulfonyl)carbamate was dissolved in the chosen alcohol (2 mL) in a microwave vial, which was closed using an aluminum open-top seal with PTFE-faced septum. The reaction mixture was heated under microwave irradiation at 100-120 oC for 20-60 min. The crude reaction mixture was concentrated under reduced pressure and the residue was purified using silica gel column chromatography to yield the desired (aryl)carbamate. |