Home Cart Sign in  
Chemical Structure| 928-90-5 Chemical Structure| 928-90-5
Chemical Structure| 928-90-5

5-Hexyn-1-ol

CAS No.: 928-90-5

4.5 *For Research Use Only !

Cat. No.: A863106 Purity: 95%

Change View

Size Price

USA Stock *0-1 Day

Global Stock *5-7 Days

In Stock
250mg łÇʶÊÊ Inquiry Inquiry
1g łÇď¶ÊÊ Inquiry Inquiry
5g łËó¶ÊÊ Inquiry Inquiry
25g łÇËʶÊÊ Inquiry Inquiry
100g łÍÊÿ¶ÊÊ Inquiry Inquiry
500g łËÊ˧¶ÊÊ Inquiry Inquiry

  • 250mg

    łÇʶÊÊ

  • 1g

    łÇď¶ÊÊ

  • 5g

    łËó¶ÊÊ

  • 25g

    łÇËʶÊÊ

  • 100g

    łÍÊÿ¶ÊÊ

  • 500g

    łËÊ˧¶ÊÊ

In Stock

- +

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Details of [ 928-90-5 ]

CAS No. :928-90-5
Formula : C6H10O
M.W : 98.14
SMILES Code : C#CCCCCO
MDL No. :MFCD00002980
InChI Key :GOQJMMHTSOQIEI-UHFFFAOYSA-N
Pubchem ID :70234

Safety of [ 928-90-5 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Calculated chemistry of [ 928-90-5 ] Show Less

Physicochemical Properties

Num. heavy atoms 7
Num. arom. heavy atoms 0
Fraction Csp3 0.67
Num. rotatable bonds 3
Num. H-bond acceptors 1.0
Num. H-bond donors 1.0
Molar Refractivity 30.28
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

20.23 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.84
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.83
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.86
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.39
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.11
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.21

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-0.77
Solubility 16.5 mg/ml ; 0.169 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-0.84
Solubility 14.3 mg/ml ; 0.145 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.92
Solubility 11.7 mg/ml ; 0.119 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.31 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.34

Application In Synthesis [ 928-90-5 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 928-90-5 ]

[ 928-90-5 ] Synthesis Path-Downstream   1~6

  • 1
  • [ 928-90-5 ]
  • [ 17924-92-4 ]
  • 2
  • [ 23784-96-5 ]
  • [ 928-90-5 ]
  • [ 1235527-78-2 ]
  • 3
  • [ 928-90-5 ]
  • [ 151978-58-4 ]
  • 4
  • [ 24134-09-6 ]
  • [ 928-90-5 ]
  • 6-(1,2-dimethyl-1H-imidazol-5-yl)hex-5-yn-1-ol [ No CAS ]
YieldReaction ConditionsOperation in experiment
127 mg With piperidine; bis-triphenylphosphine-palladium(II) chloride; copper(l) iodide; In N,N-dimethyl-formamide; at 80℃; for 3h;Inert atmosphere; General procedure: To a solution of 2-disubstituted 1-methyl-1H-imidazole 1 (1 mmol) in DMF (5 mL), NBS(169 mg, 0,95 mmol) was added and the resulting reaction mixture was stirred in the dark at room temperature for 3h. Then, Pd(PPh3)2Cl2 (14 mg, 0.02 mmol, 2 mol%), CuI (8 mg, 0.04mmol, 4 mol%), an alkyne 3 (1,1 mmol) and piperidine (300 muL, 255 mg, 3 mmol) were added and the resulting reaction mixture was stirred at 80C (when trimethylsilylacetylene was employed as the alkyne, the reaction was carried out at 50C) for 3 h. The reaction mixture was diluted with EtOAc (100 mL), then saturated aqueous NH4Cl (100 mL) was added. The resulting mixture was stirred for 30 minutes and extracted with EtOAc (3x 25mL). The organic extracts were washed with water (3 x 25 mL) and brine (1 x 25 mL), driedover anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatogaraphy on silica gel. This procedure was employed to prepare compounds 4a-l. GLC analysis showed that all these compounds had chemical purity higherthan 98%.
  • 5
  • [ 928-90-5 ]
  • [ 14437-03-7 ]
  • C15H19NO4S [ No CAS ]
YieldReaction ConditionsOperation in experiment
98% With triphenylphosphine; diethylazodicarboxylate; In tetrahydrofuran; hexane; at 25℃; for 3h;Inert atmosphere; (a) In a 100 mL three-vial flask,5-hexyn-1-ol (1.5 mL, 13.6 mmol) was added in sequence,THF 30mL,Methyl N-(p-tosyl)carbamate I (3.27 g, 14.28 mmol),Replace nitrogen 3 times,PPh3 (3.93 g, 14.96 mmol) was added in that order.Diethyl azodicarboxylate (ie DEAD, 6.80 mL of 2.2M n-hexane, 14.96 mmol),Stir at 25°C for 3 hours and the reaction is complete.The reaction solution was concentrated to dryness, and the target product 1 was obtained by column chromatography (PE/EA=1/0 to 6/1, PE was petroleum ether, EA was ethyl acetate) (4.12 g, yield: 98percent).
  • 6
  • [ 928-90-5 ]
  • [ 60186-89-2 ]
  • C12H16N2O3 [ No CAS ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 928-90-5 ]

Alkynyls

Chemical Structure| 10160-28-8

A162678 [10160-28-8]

Non-8-yn-1-ol

Similarity: 1.00

Chemical Structure| 18202-10-3

A267431 [18202-10-3]

Dodec-11-yn-1-ol

Similarity: 1.00

Chemical Structure| 871-91-0

A494927 [871-91-0]

7-Octyn-1-ol

Similarity: 1.00

Chemical Structure| 63478-76-2

A803162 [63478-76-2]

6-Heptyn-1-ol

Similarity: 1.00

Chemical Structure| 5390-04-5

A262888 [5390-04-5]

4-Pentyn-1-ol

Similarity: 0.92

Aliphatic Chain Hydrocarbons

Chemical Structure| 10160-28-8

A162678 [10160-28-8]

Non-8-yn-1-ol

Similarity: 1.00

Chemical Structure| 18202-10-3

A267431 [18202-10-3]

Dodec-11-yn-1-ol

Similarity: 1.00

Chemical Structure| 871-91-0

A494927 [871-91-0]

7-Octyn-1-ol

Similarity: 1.00

Chemical Structure| 63478-76-2

A803162 [63478-76-2]

6-Heptyn-1-ol

Similarity: 1.00

Chemical Structure| 5390-04-5

A262888 [5390-04-5]

4-Pentyn-1-ol

Similarity: 0.92

Alcohols

Chemical Structure| 10160-28-8

A162678 [10160-28-8]

Non-8-yn-1-ol

Similarity: 1.00

Chemical Structure| 18202-10-3

A267431 [18202-10-3]

Dodec-11-yn-1-ol

Similarity: 1.00

Chemical Structure| 871-91-0

A494927 [871-91-0]

7-Octyn-1-ol

Similarity: 1.00

Chemical Structure| 63478-76-2

A803162 [63478-76-2]

6-Heptyn-1-ol

Similarity: 1.00

Chemical Structure| 5390-04-5

A262888 [5390-04-5]

4-Pentyn-1-ol

Similarity: 0.92