Home Cart Sign in  
Chemical Structure| 27741-65-7 Chemical Structure| 27741-65-7

Structure of 27741-65-7

Chemical Structure| 27741-65-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 27741-65-7 ]

CAS No. :27741-65-7
Formula : C8H12O2
M.W : 140.18
SMILES Code : O=C(OCC)/C=C1CCC\1
MDL No. :MFCD11977311
InChI Key :FGCGWHVDPBOFJE-UHFFFAOYSA-N
Pubchem ID :15724666

Safety of [ 27741-65-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302
Precautionary Statements:P280-P305+P351+P338

Computational Chemistry of [ 27741-65-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 0
Fraction Csp3 0.62
Num. rotatable bonds 3
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 39.27
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

26.3 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.38
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.4
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.66
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.46
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.98
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.78

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.39
Solubility 5.67 mg/ml ; 0.0404 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.56
Solubility 3.89 mg/ml ; 0.0278 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.47
Solubility 4.72 mg/ml ; 0.0337 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.16 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.43

Application In Synthesis of [ 27741-65-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 27741-65-7 ]
  • Downstream synthetic route of [ 27741-65-7 ]

[ 27741-65-7 ] Synthesis Path-Upstream   1~5

  • 1
  • [ 867-13-0 ]
  • [ 1191-95-3 ]
  • [ 27741-65-7 ]
YieldReaction ConditionsOperation in experiment
79%
Stage #1: With sodium hydride In tetrahydrofuran; mineral oil at 0 - 10℃; for 1.16667 h; Inert atmosphere
Stage #2: at 0 - 10℃; for 2.5 h; Inert atmosphere
To a slurry of NaH (8.0 g, 60percent in oil) in THF (150mL), was added triethyl phosphonoacetate (44.8 g)in 25 mL of THF dropwise at 0-10 oC over 40 min. The reactionmixture was stirred at 0-10 oC for another 0.5 h. Then cyclobutanone(5, 14.0 g) in 25 mL of THF was added dropwise at 0-10 oCover 30 min. The reaction mixture was stirred at 0-10 oC for 2 h. Atotal of 50 mL of water was then added slowly at 20-30 oC. Theorganic solvent was removed under reduced pressure followed by addition of 150mL of water. The aqueous solution was extracted with MTBE (3 x 100 mL). Thecombined organic phase was washed with water (100 mL). It was then dried overanhydrous MgSO4. Filtration followed by evaporation gave the crudeproduct, which was purified by fractional distillation at 81-82 oC/19mbar to give 22.2 g (79percent yield) of Compound 9 as a colorless liquid. 1HNMR (500 MHz,CDCl3) δ 5.58 (m, 1H), 4.13(q, 2H, J = 7.1 Hz), 3.15-3.12 (m, 2H),2.85-2.82 (m, 2H),2.12-2.06 (m, 2H),1.26 (t, 3H, J = 7.1 Hz); 13C NMR (125 MHz, CDCl3) δ 167.60, 166.60, 112.38, 59.53, 33.75, 32.32, 17.66, 14.36; MS (m/z)140.1; ESI-HRMS m/zcalcd for C8H12O2 [M + H]+ 141.0910, found 141.0911.
79%
Stage #1: With sodium hydride In tetrahydrofuran; mineral oil at 0 - 10℃; for 1.16667 h;
Stage #2: at 0 - 10℃; for 2.5 h;
To a slurry of NaH (8.0 g, 60 in oil) in THF (150 mL) , was added triethyl phosphonoactate (44.8 g) in 25mL of THF dropwise at 0-10 over 40 min. The reaction mixture was stirred at 0-10 for another 0.5 h. Then cyclobutanone (14.0 g) in 25 mL of THF was added dropwise at 0-10 over 30 min. The reaction mixture was stirred at 0-10 for 2 h. A total of 50 mL of water was then added slowly at 20-30 . The organic solvent was removed under reduced pressure followed by addition of 150 mL of water. The aqueous solution was extracted with MTBE (3 x 100 mL) . The combined organic phase was washed with water (100 mL) . It was then dried over anhydrous MgSO4. Filtration followed by evaporation gave the crude product, which was purified by fractional distillation at 81-82 /19 mbar to give 22.2 g (79 yield, 99 purity) of Compound 12 as a colorless liquid.1HNMR(400 MHz, CDCl3) δ 5.56 (m, 1H) , 4.13 (q, 2H, J 7.2 Hz) , 3.12 (m, 2H) , 2.81 (m, 2H) , 2.08 (m, 2H) , 1.25 (t, 3H, J 7.2 Hz) 13CNMR(100 MHz, DMSO-d6) δ167.2, 165.3, 111.8, 58.9, 33.3, 31.8, 17.1, 14.0 MS (m/z) 140.1.
75%
Stage #1: With sodium hydride In tetrahydrofuran at 0℃; for 0.166667 h;
Stage #2: at 20℃; for 4 h;
(0203) Triethyl phosphonoacetate (3.32 g, 1.0 equiv) was dissolved in abs. tetrahydrofuran and added to a suspension, cooled down to 0° C., of sodium hydride (0.58 g, 1.02 equiv, 60percent dispersion) in abs. tetrahydrofuran (5 mL). The resulting reaction mixture was stirred at a temperature of 0° C. for 10 minutes and then admixed with a solution of cyclobutanone (1.0 g, 1.0 equiv) in abs. tetrahydrofuran (5 mL), and the mixture was stirred at room temperature for a further 4 h. After the cautious addition of water, the reaction mixture was concentrated under reduced pressure and admixed with dichloromethane. The aqueous phase was then repeatedly extracted with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), ethyl cyclobutylideneacetate (1.5 g, 75percent of theory) was isolated. Ethyl cyclobutylideneacetate (1.0 g, 1.0 equiv) was dissolved in methanol and admixed with a 1 M solution of KOH in aq. methanol. The resulting reaction mixture was stirred at room temperature for 16 h, then neutralized with dil. HCl, admixed with water, concentrated under reduced pressure and then admixed with dichloromethane. The aqueous phase was then repeatedly extracted with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), cyclobutylideneacetic acid (0.40 g, 51percent of theory) was isolated. Aniline (0.26 g, 1 equiv.) was dissolved in dichloromethane (5 mL) and cooled down to a temperature of 0° C., and diisopropylethylamine (1.98 mL, 4.0 equiv.), cyclopentylideneacetic acid (0.30 g, 1.0 equiv.) and N,N,N′,N′-tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate (0.97 g, 1.1 equiv.) were added. The resulting reaction mixture was stirred at room temperature for 3 h, and water and dichloromethane were then added. The aqueous phase was then repeatedly extracted with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 2-cyclobutylidene-N-phenylacetamide (0.27 g, 54percent of theory) was isolated. In the next step, aluminum trichloride (0.42 g, 3.0 equiv.) was initially charged in abs. dichloroethane (5 mL) under argon in a baked-out round-bottom flask and then, while cooling with ice, a solution of 2-cyclobutylidene-N-phenylacetamide (0.20 g, 1.0 equiv.) in abs. dichloroethane (5 mL) was added. The resulting reaction mixture was stirred at room temperature for a further 4 h and then added cautiously to ice-water. After adding aqueous HCl and dichloromethane, the aqueous phase was extracted repeatedly with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered and concentrated cautiously under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one was isolated as a colorless solid. 1′H-Spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (0.2 g, 1 equiv.) was added to conc. acetic acid (1.5 mL) and then cautiously admixed at 0° C. with fuming nitric acid (0.5 mL). The resulting reaction mixture was then stirred at 90° C. for 2 h and, after cooling to room temperature, cautiously diluted with ice-water. The aqueous phase was then repeatedly extracted with ethyl acetate. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 6′-nitro-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (100 mg, 78percent of theory) was isolated as a colorless solid. 6′-Nitro-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (100 mg, 1.0 equiv.) was dissolved under argon in abs. dioxane (2 mL) and admixed with fine cesium carbonate powder (400 mg, 3.0 equiv.). After stirring at room temperature for 5 min, cyclobutylmethyl bromide (110 mg, 2.0 equiv.) and potassium iodide (35 mg, 0.1 equiv.) were added at room temperature. The resulting reaction mixture was stirred at 150° C. under microwave conditions for 1 h and, after cooling to room temperature, water and ethyl acetate were added. The aqueous phase was then repeatedly extracted with ethyl acetate. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 1-(cyclopropylmethyl)-6′-nitro-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (70 mg, 60percent of theory) was isolated as a colorless solid. In the next step, 1-(cyclopropylmethyl)-6′-nitro-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (50 g, 1 equiv.) was added together with zinc dust (55 mg, 5 equiv.) and ammonium chloride (90 mg, 10 equiv.) to methanol/water (5:1) and the mixture was stirred under argon at a temperature of 70° C. for 2 h. After cooling to room temperature, the reaction mixture was poured onto ice-water and then adjusted to pH 12 with 6 N NaOH. The aqueous phase was then repeatedly extracted with ethyl acetate. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 6′-amino-1-(cyclopropylmethyl)-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (35 mg, 70percent of theory) was isolated as a colorless solid. 6′-Amino-1-(cyclopropylmethyl)-1′H-spiro[cyclobutyl-1,4′-quinolin]-2′(3′H)-one (100 mg, 1.0 equiv.) was dissolved together with 4-methylphenylsulfonyl chloride (81 mg, 1.1 equiv) in abs. dichloromethane (5 mL) in a baked-out round-bottom flask under argon, then pyridine (0.15 mL, 5 equiv.) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was then concentrated under reduced pressure, the remaining residue was admixed with dil. HCl and dichloromethane, and the aqueous phase was extracted repeatedly with dichloromethane. The combined organic phases were dried over magnesium sulfate, filtered and concentrated under reduced pressure. By column chromatography purification of the crude product obtained (ethyl acetate/heptane gradient), 4-methyl-N-[1′-(cyclopropylmethyl)-2′-oxo-2′,3′-dihydro-1′H-spiro[cyclobutyl-1,4′-quinolin]-6′-yl]phenylsulfonamide (70 mg, 43percent of theory) was isolated as a colorless solid. 1H-NMR (400 MHz, d6-DMSO δ, ppm) 10.05 (s, 1H, NH), 7.62 (d, 2H), 7.36 (d, 2H), 7.12 (m, 2H), 6.96 (m, 1H), 3.76 (m, 2H), 2.61 (s, 2H), 2.33 (s, 3H), 2.03-1.92 (m, 5H), 1.79 (m, 1H), 0.97 (m, 1H), 0.36 (m, 2H), 0.22 (m, 2H).
16%
Stage #1: With sodium hydride In tetrahydrofuran at 0℃; for 0.0833333 h;
Stage #2: at 27℃; for 2 h;
To a stirred suspension of 60percent NaH (1.23 g, 51.35 mmol) in THF (50 mL), ethyl 2-(diethoxyphosphoryl)acetate (6.23 mL, 31.38 mmol) in 10 mL THF was added at 0°C and stirred for 5 mm at same temperature. Then cyclobutanone 75 (2 g, 28.53 mmol) in THF (10 mL) was added to it and allowed to stir at room temperature for 2h. Then the reaction mixture was quenched with cold water and extracted with ethyl acetate. The combined organic layer was dried over Na2SO4 and concentrated under reduced pressure to obtain ethyl 2-cyclobutylideneacetate 76 as colorless liquid (0.65 g, 16percent yield). 1HNMR (400 MHz, CDC13): ö 5.57 (s, 1H), 4.13 (q, 2H), 3.12 (t, 2H), 2.82 (t, 2H), 2.12-2.04 (m, 2H), 1.26 (t, 3H).
96% With NaH In tetrahydrofuran Synthesis of Cyclobutylidene-acetic acid ethyl ester (2)
NaH (60percent dispersion in oil, 1.80 g, 44.94 mmol) was suspended in dry tetrahydrofuran (80 mL) and cooled to 0° C. Triethylphosphonoacetate (9.33 mL, 47.08 mmol) was added and the mixture stirred at 0° C. for 15 minutes.
Cyclobutanone (1) (3.0 g, 42.8 mmol) in THF (20 mL) was then added and the mixture allowed to warm to room temperature.
After 2 hours, the mixture was partitioned between diethyl ether (200 mL) and water (150 mL).
The organic phase was separated, washed with brine, dried (MgSO4), and the solvent removed in vacuo at 600 mm Hg.
The residue was purified by flash chromatography (silica, ethyl acetate:pentane 1:19) to give 5.81 g (96percent) of (2) as a colorless oil.
1H NMR, 400 MHz (CDCl3): δ1.27 (3H, t, J=6 Hz), 2.09 (2H, m), 2.82 (2H, m,) 3.15 (2H, m), 4.14 (2H, q, J=6 Hz), 5.58 (1H, s).
MS (ES+) m/e: 141 ([MH+], 100percent). IR (film) ν cm-1: 1088, 1189, 1336, 1673, 1716, 2926.
80% With ammonium chloride; sodium hexamethyldisilazane In tetrahydrofuran Step A
Ethyl 3,3-trimethylene acrylate
A solution of triethylphosphonoacetate (17 mL, 85.6 mmol), in 150 mL dry THF was cooled to -78° C. A solution of sodium hexamethyldisilazide (86 mL, 1.0M in THF, 86 mmol) was added.
The mixture was warmed to 0 C for 30 min and cyclobutanone (5 grams, 71.3 mmol) was added.
The mixture was warmed to room temperature and stirred overnight.
Sat'd ammonium chloride was added and the mixture was extracted with ethyl acetate.
The organic was dried over sodium sulfate and concentrated.
Flash chromatography (30/1 hexane/ether) afforded 8.0 grams (80percent) of the desired compound. 1H NMR (300 MHz, CDCl3).
δ1.25 (t, 3H), 2.0-2.2 (p, 2H), 2.8-2.9 (t, 2H), 3.1-3.2 (t, 2H), 4.1-4.2 (q, 2H), 5.58 (s, 1H).

References: [1] Journal of Organic Chemistry, 2016, vol. 81, # 3, p. 1057 - 1074.
[2] Journal of the Chemical Society. Perkin Transactions 2, 1999, # 5, p. 937 - 945.
[3] Tetrahedron Letters, 2015, vol. 56, # 45, p. 6287 - 6289.
[4] Patent: WO2016/37534, 2016, A1, . Location in patent: Page/Page column 19.
[5] Patent: US2017/27172, 2017, A1, . Location in patent: Paragraph 0203.
[6] Patent: WO2015/25197, 2015, A1, . Location in patent: Paragraph 000149.
[7] Journal of Medicinal Chemistry, 2005, vol. 48, # 15, p. 5025 - 5037.
[8] Patent: US6635673, 2003, B1, .
[9] Patent: US6248755, 2001, B1, .
[10] European Journal of Organic Chemistry, 2017, vol. 2017, # 31, p. 4530 - 4542.
[11] Molecules, 2018, vol. 23, # 11, .
  • 2
  • [ 1191-95-3 ]
  • [ 1099-45-2 ]
  • [ 27741-65-7 ]
YieldReaction ConditionsOperation in experiment
70% at 125 - 140℃; for 24 h; Cyclobutanone (0.5 g, 7.14 mmol) and (ethoxycarbonylmethylen)-triphenylphosphorane (2.7 g, 7.75 mmol) were heated to 125 to 140° C. in seal tube for 24 h. Reaction mixture was cooled to room temperature; 50 mL of pentane was added and stirred for 20 min. Then reaction mixture was filtered. Pentane layer was evaporated without applying pressure. Crude product was purified by column chromatography (silica gel 60-120 mesh, diethyl ether and n-pentane was used as eluent) afforded colorless oil. Yield: 0.7 g, 70percent.1H NMR (400 MHz, CDCl3): δ 1.27 (t, J=7.0 Hz, 3H), 2.04-2.13 (m, 2H), 2.83 (t, J=8.0 Hz, 2H), 3.13 (t, J=8.0 Hz, 2H), 4.10-4.17 (m, 2H), 5.58 (t, J=2.2 Hz, 1H)
References: [1] Patent: US2012/295874, 2012, A1, . Location in patent: Page/Page column 245.
[2] Journal of the American Chemical Society, 1973, vol. 95, # 6, p. 1849 - 1859.
  • 3
  • [ 71032-10-5 ]
  • [ 27741-65-7 ]
References: [1] Journal of the American Chemical Society, 2006, vol. 128, # 5, p. 1472 - 1473.
  • 4
  • [ 1191-95-3 ]
  • [ 27741-65-7 ]
References: [1] Patent: EP1443046, 2004, A1, . Location in patent: Page 176.
[2] Patent: US2006/128790, 2006, A1, . Location in patent: Page/Page column 81; 97.
  • 5
  • [ 867-13-0 ]
  • [ 27741-65-7 ]
References: [1] Patent: US2006/128790, 2006, A1, . Location in patent: Page/Page column 67.
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 27741-65-7 ]

Alkenyls

Chemical Structure| 27829-72-7

A847408 [27829-72-7]

Ethyl (E)-hex-2-enoate

Similarity: 0.88

Chemical Structure| 141-12-8

A341946 [141-12-8]

(Z)-3,7-Dimethylocta-2,6-dien-1-yl acetate

Similarity: 0.85

Chemical Structure| 638-10-8

A466900 [638-10-8]

Ethyl 3-methylbut-2-enoate

Similarity: 0.84

Chemical Structure| 945-93-7

A681456 [945-93-7]

Ethyl 3-phenylbut-2-enoate

Similarity: 0.84

Chemical Structure| 2396-77-2

A154352 [2396-77-2]

Methyl 2-Hexenoate

Similarity: 0.81

Aliphatic Cyclic Hydrocarbons

Chemical Structure| 25662-28-6

A150792 [25662-28-6]

Methyl 1-cyclopentene-1-carboxylate

Similarity: 0.73

Chemical Structure| 18448-47-0

A187837 [18448-47-0]

Methyl cyclohex-1-enecarboxylate

Similarity: 0.73

Chemical Structure| 2396-84-1

A461496 [2396-84-1]

(2E,4E)-Ethyl hexa-2,4-dienoate

Similarity: 0.71

Chemical Structure| 54396-74-6

A162430 [54396-74-6]

Methyl 3-oxocyclohex-1-enecarboxylate

Similarity: 0.67

Chemical Structure| 108384-35-6

A360510 [108384-35-6]

Methyl 3-oxocyclopent-1-enecarboxylate

Similarity: 0.67

Esters

Chemical Structure| 27829-72-7

A847408 [27829-72-7]

Ethyl (E)-hex-2-enoate

Similarity: 0.88

Chemical Structure| 141-12-8

A341946 [141-12-8]

(Z)-3,7-Dimethylocta-2,6-dien-1-yl acetate

Similarity: 0.85

Chemical Structure| 638-10-8

A466900 [638-10-8]

Ethyl 3-methylbut-2-enoate

Similarity: 0.84

Chemical Structure| 945-93-7

A681456 [945-93-7]

Ethyl 3-phenylbut-2-enoate

Similarity: 0.84

Chemical Structure| 2396-77-2

A154352 [2396-77-2]

Methyl 2-Hexenoate

Similarity: 0.81