Structure of 23088-23-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 23088-23-5 |
Formula : | C10H8N2O2 |
M.W : | 188.18 |
SMILES Code : | COC(=O)C1=CC2=C(C=C1)N=CC=N2 |
MDL No. : | MFCD00102618 |
InChI Key : | VFPWJISMXACHIG-UHFFFAOYSA-N |
Pubchem ID : | 2781239 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H335 |
Precautionary Statements: | P261 |
Num. heavy atoms | 14 |
Num. arom. heavy atoms | 10 |
Fraction Csp3 | 0.1 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 50.82 |
TPSA ? Topological Polar Surface Area: Calculated from |
52.08 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.04 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.43 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.42 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.76 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.77 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.48 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.3 |
Solubility | 0.934 mg/ml ; 0.00496 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.13 |
Solubility | 1.4 mg/ml ; 0.00743 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.41 |
Solubility | 0.0739 mg/ml ; 0.000393 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.43 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.57 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93% | In water; isopropyl alcohol; at 80.0℃; for 2.0h; | Step 1: Methyl quinoxaline-6-carboxylate (237a) [0385] To a stirred solution of 3, 4-DIAMINO-BENZOIC acid methyl ester (236,2 g, 12.03 mmol) in isopropanol (50 mL) was added oxaldehyde as a 40% solution in water (13.23 MMOL, 1.52 mL). The reaction mixture was heated at 80C for 2 hours, the solvent was removed under reduced pressure and the residue was dried under vacuum to yield 237a as a yellow solid (2.09 g, 93% yield NMR: (DMSO) 6 9.01 (s, 2H), 8.54 (d, J=1.6 Hz, 1H), 8.23 (dd, J=8.6, 2.0 Hz, 1H), 8.14 (dd, J=8. 6,0. 6 Hz, 1H), 3.35 (s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
76.6% | Preparation Example I-1. Quinoxaline-6-carboxylic acid To a solution of quinoxaline-6-carboxylic acid methyl ester (2084mg, 11.07mmol) in ethanol (25mL) was added an aqueous solution of 1 N sodium hydroxide (25mL), and the solution was stirred for 4 hours under reflux. 1 N Hydrochloric acid was added to the reaction mixture to adjust the pH to 4, then, the precipitated solid was collected by filtration, washed with water and isopropanol, then dried to obtain the title compound (1477mg, 8.479mmol, 76.6%) as a solid. 1H-NMR Spectrum (DMSO-d6) δ (ppm): 8.18 (1 H, d, J=8.4Hz), 8.29 (1H, dd, J=8.4, 1.2Hz), 8.61 (1 H, d, J=1.2Hz), 9.00-9.07 (2H, m). | |
76.6% | To a solution of quinoxaline-6-carboxylic acid methyl ester (2084mg, 11.07mmol) in ethanol (25mL) was added an aqueous solution of 1 N sodium hydroxide (25mL), and the solution was stirred for 4 hours under reflux. 1 N Hydrochloric acid was added to the reaction mixture to adjust the pH to 4, then, the precipitated solid was collected by filtration, washed with water and isopropanol, then dried to obtain the title compound (1477mg, 8.479mmol, 76.6%) as a solid. 1H-NMR Spectrum (DMSO-d6) δ(ppm) : 8.18 (1H, d, J=8.4Hz), 8.29 (1H, dd, J=8.4, 1.2Hz), 8.61 (1 H, d, J=1.2Hz), 9.00-9.07 (2H, m). | |
To a solution of <strong>[23088-23-5]methyl quinoxaline-6-carboxylate</strong> (500 mg, 2.66 mmol) in 10 mL of THF was added sodium hydroxide (5N, 2.5 mL, 12.5 mmol) followed by methanol (2.5 mL). The reaction was stirred at room temperature overnight and then concentrated in vacuo to remove THF/MeOH. The resulting aqueous mixture was acidified with IN HCl until the pH was slightly acidic (pH = 5). The resulting solution was extracted with EtOAc (3x), and the combined organic layers were then washed with brine, dried over anhydrous MgSO4, filtered and concentrated in vacuo. The resulting white solid was used without further purification. LC-MS: 3.50 min. (M+H) = 175.16 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; sodium hydroxide; In methanol; water; ethyl acetate; | The 6-quinoxalinylcarbonyl chloride used as a starting material was prepared as follows: A 2N aqueous sodium hydroxide solution (7.95 ml) was added to a solution of <strong>[23088-23-5]methyl quinoxaline-6-carboxylate</strong> (1 g) in a mixture of methanol (30 ml) and water (5 ml) and the mixture was stirred at ambient temperature for 16 hours. The reaction mixture was evaporated and the residue was dissolved in water. The solution was acidified to pH3.5 by the addition of dilute aqueous hydrochloric acid and extracted with ethyl acetate. The organic extracts were evaporated and the residue was triturated under a mixture of ethyl acetate and isohexane. There was thus obtained quinoxaline-6-carboxylic acid a solid (0.5 g); NMR Spectrum: (DMSOd6) 8.16 (d, 1H), 8.28 (d, 1H), 8.59 (s, 1H), 9.02 (s, 2H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In tetrahydrofuran; diethyl ether; water; | Step 1: 2-(2-Chloro-4-methoxy-phenyl)-1-quinoxalin-6-yl-ethanone A 2M solution of tert-butylmagnesium chloride (CAS Reg. No. 677-22-5) in diethyl ether (5.9 ml) was added to 2-chloro-4-methoxyphenylacetic acid (1.173 g, CAS Reg. No. 91367-09-8) in THF (10 ml). The mixture was stirred at room temperature for 30 min. A solution of methyl 6-quinoxalinecarboxylate (1 g, CAS Reg. No. 23088-23-5) in THF (3 ml) was added and the resulting mixture was stirred overnight. Aqueous HCl (25%, 1.5 ml) and water (30 ml) were added and extracted with EtOAc. The combined organic layers were dried over Na2SO4 and then concentrated to an oil. The residue was purified by flash chromatography (SiO2, EtOAc/heptane 1:2) to give the title compound (480 mg) as a light brown solid. MS (m/e)=313.2 [M+H+]. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
96.7% | In N,N-dimethyl-formamide; at 90.0℃; for 8.0h; | Take a 100ml single-mouth bottle,Add 3,4-diaminobenzoic acid methyl ester (2) 3.32 g (0.02 mol),And added 30 ml of N,N-dimethylformamide, and dissolved by stirring.Then, [1,4]dioxane-2,3-diol (a) 3.6 g (0.03 mol) was added.Stir at 90 C for 8 hours.Then extracted, washed,Drying to give methyl quinoxaline-6-carboxylate (3)3.64 g, yield 96.7%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87% | With sodium tetrahydridoborate; In methanol; at 90.0℃; for 2.0h; | Take a 100 ml single-mouth bottle, add quinoxaline-6-carboxylic acid methyl ester (3) 3.76 g (0.02 mol), add 50 ml of methanol, stir to dissolve,Then, 3.02 g (0.08 mol) of sodium borohydride was slowly added.The reaction was carried out at 90 C for 2 hours.After the reaction is completed, excess methanol is distilled off under reduced pressure.Then, it is extracted and dried to obtain 3.24 g of methyl 1,2,3,4-tetrahydroquinoxaline-6-carboxylate (4).The yield was 87%. |