Structure of 136918-14-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 136918-14-4 |
Formula : | C8H5NO2 |
M.W : | 147.13 |
SMILES Code : | O=C1N=C(O)C2=C1C=CC=C2 |
MDL No. : | N/A |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
58% | With chlorine; triethylamine; In dichloromethane; N,N-dimethyl-formamide; | N-(2-cyanoethylmercapto)phthalimide 21 A Solution of chlorine in dichloromethane (1.4 mol dm-3, 10.0 cm3, 14.0 mmol) was added dropwise to a stirred solution of 2-cyanoethyl mercaptan, (see, for example, Bauer and Welsh, loc cit), (1.22 g, 14.0 mmol) in dichloromethane (21 cm3) at 0 C. (ice-water bath). After the products had been allowed to warm to room temperature, they were added dropwise to a stirred slurry of phthalimide (1.47 g, 10.0 mmol) and triethylamine (1.94 cm3, 14.0 mmol) in dry DMF (12 cm3) at 0 C. (ice-water bath). The stirred reactants were allowed to warm to room temperature. After 2 h, the products were poured into saturated aqueous sodium hydrogen carbonate (25 cm3) and the resulting mixture was extracted with dichloromethane (2*50 cm3). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was crystallized from ethanol to give N-(2-cyanoethylmercapto)phthalimide 21 as colourless needles (1.345 g, 58%) (Found: C, 57.0; H, 3.4; N, 11.8. C11 H8 N2 O2 S requires: C, 56.9; H, 3.5; N, 12.1%), m.p. 162-164 C.; deltaH ?CDCl3! 2.79 (2 H, t, J7.2), 3.12 (2 H, t, J7.2), 7.83 (2 H, m), 7.95 (2 H, m); deltaC ?CDCl3! 18.7, 34.5, 117.5, 124.1, 131.7, 134.9, 168.1. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 0 - 20℃; for 2.5h; | To a solution of phthalimide (1.01 g) in 50 mL of dry THF was added triphenylphosphine (3 eq) and alcohol 3b (1 eq). The mixture was cooled in an ice-water bath and diisopropyl azodicarboxylate (2.5 eq) was added dropwise. The resulting mixture was stirred at 0 C. for 10 min and warmed to room temp and stirred for approximately 2.5 h until no more starting material was detected by TLC (ethyl acetate/hexanes; 3:7). The mixture was concentrated under reduced pressure. The residue was resuspended in 80 mL of dichloromethane. The solids were filtered off. The filtrate was concentrated to half its volume and hexanes (30 mL) were added. The solids were filtered off. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel (gradient: ethyl acetate/hexanes; 1:9 to 4:6) to give the product 3c. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84% | With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 0 - 20℃; for 72h; | [00431] To a solution of fert-butyl (2-((fert-butoxycarbonyl)amino)ethyl)(2- hydroxyethyl)carbamate (2.3 g, 7.56 mmol), phthalimide (1.21 g, 8.24 mmol), and triphenyl phosphine (2.16 g, 8.24 mmol) in tetrahydrofuran (50 mL) at 0 C was added dropwise diisopropyl azodicarboxylate (DIAD) (1.62 mL, 8.24 mmol) and the reaction mixture stirred at room temperature for three days. The solvent was removed to get the crude product which was purified by silica gel chromatography (0-50% EtOAc in hexanes) to give fert-butyl (2-((tert- butoxycarbonyl)amino)ethyl)(2-(l,3-dioxoisoindolin-2-yl)ethyl)carbamate (2.75 g, 84%) as a foamy white solid. NMR (300 MHz, CDCb): delta ppm 7.82 (m, 2H); 7.72-7.69 (m, 2H); 5.16 (bs, 1H); 3.83-3.79 (m, 2H); 3.50-3.49 (m, 2H); 3.33-3.28 (m, 4H); 1.40 (s, 9H); 1.21 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With triphenylphosphine; diethylazodicarboxylate; In tetrahydrofuran; hexane; toluene; at 0 - 20℃; for 3h; | To a solution of S-(-)-propargyl-2-ol (2.5 g, 0.035 mol), phthalimide (5,4 g, 0.037 mol) and triphenylphosphine (14.1 g, 0.055 mol) in tetrahydrofuran was added a solution of diethyl azodicarboxylate (24.9 mL, 0.055 mol) in toluene at 0 C. drop wise. Then the reaction mixture was stirred at room temperature for 3 hours. The solvent was removed and the residue was dissolved in ether and stored in freezer overnight. The solution was filtered and the filtrate was concentrated and purified on silica gel (530% ethyl acatate in hexane) to give 4.15 g of the title compound (60% yield). 1H NMR (500 MHz, CDCl3) delta ppm 1.72 (d, J=7.32 Hz, 6 H) 2.35 (d, J=2.44 Hz, 1 H) 5.18-5.25 (m, 1 H) 7.70-7.75 (m, 2 H) 7.83-7.89 (m, 2 H). MS (ESI) m/z 232.0 (M+33)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triphenylphosphine; In tetrahydrofuran; | Preparation Example 26 N-(3-nitrophenethyl)phthalimide In tetrahydrofuran (225 ml) was dissolved 15 g of <strong>[52022-77-2]3-nitrophenethyl alcohol</strong>, followed by adding triphenylphosphine (26 g) and phthalimide (13.9 g). Then, the resulting mixture was ice-cooled, followed by dropwise addition of diethyl azodicarboxylate (15.5 ml). After stirring at room temperature for 1 hour, the resulting crystals were collected by filtration, washed with diethyl ether and dried, to give N-(3-nitrophenethyl)phthalimide as colorless crystals. 1H-NMR (CDCl3) delta (ppm): 3.12 (2H, t, J=7.4 Hz), 3.98 (2H, t, J=7.4 Hz), 7.47 (1H, dd, J=8.0, 8.0 Hz), 7.60 (1H, d, J=8.0 Hz), 7.72 (2H, m), 7.83 (2H, m), 8.09 (1H, d, J=8.0 Hz), 8.12 (1H, s). | |
With triphenylphosphine; In tetrahydrofuran; | Production Example 26b N-(3-Nitrophenethyl)phthalimide 3-Nitrophenethyl alcohol (15 g) was dissolved in tetrahydrofuran (225 ml). After adding triphenylphosphine (26 g) and phthalimide (13.9 g) thereto, the mixture was ice-cooled and diethylazodicarboxylate (15.5 ml) was added dropwise thereinto. After stirring at room temperature for one hour, the resulting crystals were collected by filtration, washed with diethyl ether and dried, to give N-(3-nitrophenethyl)phthalimide as colorless crystals. 1H-NMR(CDCl3) delta (ppm): 3.12 (2H, t, J=7.4Hz), 3.98 (2H, t, J=7.4Hz), 7.47 (1H, dd, J=8.0,8.0Hz), 7.60 (1H, d, J=8.0Hz), 7.72 (2H, m), 7.83 (2H, m), 8.09 (1H, d, J=8.0Hz), 8.12 (1H,s). | |
With triphenylphosphine; In tetrahydrofuran; | PRODUCTION EXAMPLE 26b N-(3-Nitrophenethyl)phthalimide 3-Nitrophenethyl alcohol (15 g) was dissolved in tetrahydrofuran (225 ml). After adding triphenylphosphine (26 g) and phthalimide (13.9 g) thereto, the mixture was ice-cooled and diethylazodicarboxylate (15.5 ml) was added dropwise thereinto. After stirring at room temperature for one hour, the resulting crystals were collected by filtration, washed with diethyl ether and dried, to give N-(3-nitrophenethyl)phthalimide as colorless crystals. 1H-NMR(CDCl3) delta (ppm): 3.12 (2H, t, J=7.4 Hz), 3.98 (2H, t, J=7.4 Hz), 7.47 (1H, dd, J=8.0, 8.0 Hz), 7.60 (1H, d, J=8.0 Hz), 7.72 (2H, m), 7.83 (2H, m), 8.09 (1H, d, J=8.0 Hz), 8.12 (1H, s). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 20 - 25℃; for 1.0h; | To a solution of 1 ,1-dimethylethyl [(1 S)-2-(3-fluorophenyl)-1-(hydroxymethyl)ethyl]carbamate (7.0 g, 26.0 mmol), triphenylphosphine (8.18 g, 31.2 mmol) and phthalimide (4.21 g, 28.6 mmol) in THF (150 ml.) at 25 C was added diisopropyl azodicarboxylate (7.58 ml_, 39.0 mmol). After stirring at RT for 1 h, the reaction solution was concentrated under vacuum and the residue triturated with Et2O (100 ml.) and filtered to give the crude product (22 g) as a white solid which was used directly without further purification: LCMS (ES) m/z 399 (M+H)+. | |
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 20 - 25℃; for 1.0h; | To a solution of 1 ,1-dimethylethyl [(1 S)-2-(3-fluorophenyl)-1- (hydroxymethyl)ethyl]carbamate (7.0 g, 26.0 mmol), triphenylphosphine (8.18 g, 31.2 mmol) and phthalimide (4.21 g, 28.6 mmol) in THF (150 ml.) at 25 0C was added diisopropyl azodicarboxylate (7.58 ml_, 39.0 mmol). After stirring at RT for 1 h, the reaction solution was concentrated under vacuum and the residue triturated with Et2O (100 ml.) and filtered to give the crude product (22 g) as a white solid which was used directly without further purification: LCMS (ES) m/z 399 (M+H)+. | |
With triphenylphosphine; diethylazodicarboxylate; In tetrahydrofuran; at 20℃; for 2.0h; | Step B 2-[(2S)-2-amino-3-(3-fluorophenyl)propyl]-1H-isoindole-1,3(2H)-dione [1.0]-hydrogen chloride To a solution of tert-butyl[(1S)-1-(3-fluorobenzyl)-2-hydroxyethyl]carbamate (9.40 g, 34.9 mmol), triphenylphosphine (9.15 g, 34.9 mmol), and phthalimide (5.14 g, 34.9 mmol) in tetrahydrofuran (100 mL, 1000 mmol) at room temperature was added diethyl azodicarboxylate (17.9 mL, 45.4 mmol). The reaction was stirred at room temperature for 2 hr and then concentrated under reduced pressure. The residue was purified by combi-flash chromatography eluted with EtOAc/hexane (0-40%) to give the desired intermediate. LCMS found: 399.0 (M+1). To the solution of the purified intermediate in methanol (20 mL, 400 mmol) was added 4.0 M hydrogen chloride in dioxane (30 mL, 100 mmol). The mixture was stirred at room temperature for 2 h and then concentrated under reduced pressure to give 3.1 g (26% total yield for the two steps) of the final product, 2-[(2S)-2-amino-3-(3-fluorophenyl)propyl]-1H-isoindole-1,3(2H)-dione [1.0]-Hydrogen chloride, as white solid. LC/MS found: 299.0 (M+H)+. |
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 20 - 25℃; | b) 1 , 1 -dimethylethyl {(1 S)-2-(1 ,3-dioxo-1 ,3-dihydro-2H-isoindol-2-yl)-1 -[(3- fluorophenyl)methyl]ethyl}carbamate <n="31"/> To a solution of 1 ,1-dimethylethyl [(1 S)-2-(3-fluorophenyl)-1-(hydroxymethyl)ethyl]carbamate (7.0 g, 26.0 mmol), triphenylphosphine (8.18 g, 31.2 mmol) and phthalimide (4.21 g, 28.6 mmol) in THF (150 ml.) at 25 C was added diisopropyl azodicarboxylate (7.58 ml_, 39.0 mmol). After stirring at RT for 1 h, the reaction solution was concentrated under vacuum and the residue triturated with Et2O (100 ml.) and filtered to give the crude product (22 g) as a white solid which was used directly without further purification: LCMS (ES) m/z 399 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
21% | With potassium carbonate; In N,N-dimethyl-formamide; at 80℃; for 4h; | To a stirred mixture of compound 4 (1 g, 6.8 mmol) and K2CO3 (2.8 g, 20 mmol) in 8 ml of DMF was added a solution of compound 3 (2.47 g, 9.5 mmol) in DMF (4 mL) and the mixture was heated to 800C for 4hours. The reaction mixture was filtered and the filtrate was -I l l- evaporated to obtain crude residue, which was dissolved again with EtOAc (50 mL) and the organic layer was washed with water (30 mL). The organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give a crude residue which was purified by column chromatography using 10% EtOAc/hexane as an eluent to give compound 5 as a colourless liquid (660 mg). Yield: 21%.1HNMR (400 MHz, CDCl3): δ (ppm): 7.9-7.8 (m, 2H), 7.75-7.65 (m, 2H), 3.80-3.70 (m, 3H), 3.65-3.45 (m, 3H), 2.15-2.05 (m, 2H), 1.90-1.80 (m, 2H), 1.30-1.20 (m, 2H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5.6% | With ammonium molybdate; urea; nickel dichloride; In quinoline; at 250℃; for 0.166667h;Inert atmosphere; | (b) A mixture of 4 (0.11 g, 0.77 mmol), 2 (0.10 g, 0.77 mmol), anhydrous NiCl2 (0.1 g, 0.8 mmol), urea (0.6 g, 10 mmol), and a catalytic amount of MOA was ground into a homogeneous mixture, which was transferred to a test tube and reacted at 250 C for 10 min. After cooling to room temperature, the residue was ground, and washed successively with hot water and hot 50% ethanol until the washings were colorless. The purification procedures described above afforded 8 mg of 3 (5.6%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
67.2% | With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 20℃; for 0.5h;Cooling with ice; | To an ice cooled mixture of [(S)-2-(3-fluoro-phenyl)-1-hydroxymethyl-ethyl]carbamic acid tert-butyl ester (1.214 g, 4.5 mmol), triphenyl phosphine (1.359 g, 5.18 mmol), phthalimide (0.762 g, 5.18 mmol) and tetrahydrofuran (15 mL) was added a solution of diisopropyldiazodicarboxylate (1.048 g, 5.18 mmol) in tetrahydrofuran (5 mL). The mixture was stirred for 30 minutes at room temperature and then concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with dichloromethane-ethyl acetate (90:10) to give [(S)-1-(1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(3-fluoro-phenyl)-ethyl]carbamic acid tert-butyl ester as a white solid. (Yield 1.205 g, 67.2%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
65% | Phthalimide (2.74 g, 18.6 mmol) was dissolved in dry tetrahydrofuran (120mL).5 Triphenylphosphine (9.76 g, 37.2 mmol) and <strong>[169556-48-3]tert-butyl (1-hydroxy-3-methylbutan-2-yl)carbamate</strong>(Step B, 2.52 g, 12.4 mmol) were added. The resulting colorless solution was cooled to 0 oc andstirred under nitrogen. Then diisopropylazodicarboxylate (6.27 g, 31 mmol) was slowly added. Thesolution was heated to ambient temperature and stirred for 12 hours. Then the reaction mixture wasconcentrated in vacuo, and the residue was purified with on silica gel column eluting with mixture10 hexane:ethyl acetate (3:1) to afford 2.7 g, 65% of the titled compound as a white solid. 1H NMR (300MHz, CDCb) o ppm 1.03 (t, J=9.2Hz, 6H), 1.2 (s, 9H), 1.80-1.90 (m, 1H), 3.63-3.96 (m, 3H), 4.50-4.60 (m, 1H), 7.65-7.75 (m, 2H), 7.80-7.90(m, 2H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5.4 g | With triphenylphosphine; diethylazodicarboxylate; In tetrahydrofuran; toluene; at 20℃; for 12h;Cooling with ice; | After a mixture of NaBH4 (5.2 g, 139 mmol) and LiCl (5.9 g,139 mmol) in dry EtOH (30 mL) was stirred for 30 min at 0 C, compound20 (6.0 g, 23 mmol) dissolved in 15 mL of dry THF wasadded. The resulting mixture was warmed to room temperatureand stirred for 12 h. The precipitate was filtered over Celite andwashed with EtOH. The filtrate was then evaporated and partitionedbetween ethyl acetate and brine. After the aqueous layerwas extracted with ethyl acetate (5), the organic layer was driedover Na2SO4 and concentrated in vacuo to afford the intermediatealcohol as a yellow oil. To a reaction mixture of dry THF (100 mL)containing 11 g (42 mmol) of PPh3, 8.2 g (56 mmol) of phthalimide,and 6.6 g (28 mmol) of the yellow oil, 22.7 mL (40% in toluene,50 mmol) of diethyl azodicarboxylate dissolved in dry THF(20 mL) was added dropwise while stirring in an ice bath. After12 h at ambient temperature, the solvent was evaporated, and theresulting residue was purified by column chromatography (hexane/ethyl acetate = 3:1) to afford 21 as white crystals (5.4 g, 53%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
65% | With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 0 - 20℃; for 8h; | General procedure: To a solution of 4.1 g (33.7 mmol) of (6-methyl-2-pyridyl)methanol 12b in 200 mL of THF was added 9.69 g (37 mmol) of triphenylphosphine and 4.95 g (33.7 mmol) of phthalimide. The mixture was cooled to 0 C and a solution of 7.47 g (37 mmol) of DIAD in 20 mL of THF was added. The mixture was stirred at room temperature for 8 h. The solvent was distilled off in a vacuum, and the residue was chromatographed on a silica gel column (ethyl acetate- hexane, 1 : 2). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93.3% | With triphenylphosphine; diethylazodicarboxylate; In tetrahydrofuran; at 0 - 25℃; for 16h;Inert atmosphere; | Under nitrogen gas protection, <strong>[1147557-97-8]tert-butyl 6-hydroxyl-2-azaspiro[3.3]heptane-2-carboxylate</strong> (4.0 g, 18.8 mmol), phthalimide (3.86 g, 26.2 mmol) and triphenylphosphine (5.92 g, 22.6 mmol) were added to tetrahydrofuran (100 mL), cooled to 0°C, diethyl azodicarboxylate (3.93 g, 22.6 mmol) was slowly added dropwise. After addition, the reaction solution was heated to 25°C and stirred for 16 h. After complete reaction as measured by LC-MS, water (1 mL) was added to quench the reaction, concentration was performed by removing solvent under reduced pressure, water (150 mL) and ethyl acetate (150 mL) were added, the phases were separated, the aqueous phase was extracted with ethyl acetate (100 mL *2), and the organic phases were combined, concentrated. The crude product was purified by silica gel chromatography (petroleum ether : ethyl acetate = 10:1) to obtain the title compound in white color (6.0 g, yield 93.3 percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80.7% | With N-ethyl-N,N-diisopropylamine; sodium iodide; In N,N-dimethyl-formamide; at 90℃; | Diisopropylethylamine (6 g) was added to a solution of phthalimide (6 g) in dimethylformamide (30 ml) at room temperature. To this solution, <strong>[530084-79-8]8-(phenylmethoxy)-5-[(R)-2-bromo-1-hydroxy-ethyl]-(1H)-quinoline-2-one</strong> (11 gm) was added slowly followed by sodium iodide (1 g). The resulting mass was heated to 90 C. and stirred till the completion of reaction as monitored by TLC. The reaction mass was diluted with water (200 ml) and the crude product was isolated by filtration. The wet filter cake was suspended in water (60 ml), stirred for 1 hour, filtered, washed with water to obtain 5-[(R)-(2-phthalimido-1-hydroxy-ethyl)-8-phenylmethoxy-(1H)-quinolin-2-one (10.4 gm) after drying. Yield: 80.7%. |
Tags: 136918-14-4 synthesis path| 136918-14-4 SDS| 136918-14-4 COA| 136918-14-4 purity| 136918-14-4 application| 136918-14-4 NMR| 136918-14-4 COA| 136918-14-4 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL