Structure of 153645-26-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 153645-26-2 |
Formula : | C11H23NO3 |
M.W : | 217.31 |
SMILES Code : | CC(C)(C)[C@@H](CO)NC(OC(C)(C)C)=O |
MDL No. : | MFCD01861301 |
InChI Key : | AZHJHZWFJVBGIL-MRVPVSSYSA-N |
Pubchem ID : | 10376058 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302 |
Precautionary Statements: | P264-P270-P301+P312-P330 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.91 |
Num. rotatable bonds | 6 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 60.41 |
TPSA ? Topological Polar Surface Area: Calculated from |
58.56 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.82 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.04 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.92 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.55 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.14 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.89 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.08 |
Solubility | 1.82 mg/ml ; 0.00839 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.9 |
Solubility | 0.275 mg/ml ; 0.00127 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.93 |
Solubility | 2.57 mg/ml ; 0.0118 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.18 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.84 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In dichloromethane; at 0℃; for 3h;Inert atmosphere; | General procedure: Mesylchloride (180 mul, 2.32 mmol) was added dropwise to a solution of tert-butyl [(1S)-1-cyclohexyl-2-hydroxyethyl]carbamate (17a) (4.0 g, 16.46 mmol) and TEA (6.8 mL, 49.38 mmol) in DCM (30 mL) at -0 C. The solution was stirred at 0 C under an atmosphere of argon for 3 h. The reaction mixture was poured into ice/water and the separated aqueous layer was re-extracted with DCM (5 mL). The combined organic layers were washed with 0.5 N HCl, water, saturated aqueous NaHCO3 sol and brine, dried (MgSO4) and the solvent was removed in vacuo to afford (2S)-2-[(tert-butoxycarbonyl)amino]-2-cyclohexylethyl methanesulfonate (18) as an orange oil (4.35 g) that was used in the next step without purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 0 - 20℃; for 2.5h; | To a solution of phthalimide (1.01 g) in 50 mL of dry THF was added triphenylphosphine (3 eq) and alcohol 3b (1 eq). The mixture was cooled in an ice-water bath and diisopropyl azodicarboxylate (2.5 eq) was added dropwise. The resulting mixture was stirred at 0 C. for 10 min and warmed to room temp and stirred for approximately 2.5 h until no more starting material was detected by TLC (ethyl acetate/hexanes; 3:7). The mixture was concentrated under reduced pressure. The residue was resuspended in 80 mL of dichloromethane. The solids were filtered off. The filtrate was concentrated to half its volume and hexanes (30 mL) were added. The solids were filtered off. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel (gradient: ethyl acetate/hexanes; 1:9 to 4:6) to give the product 3c. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
10 g | With Dess-Martin periodane; In N,N-dimethyl-formamide; at 0 - 20℃; for 2h; | To a solution of <strong>[153645-26-2](S)-tert-butyl (1-hydroxy-3,3-dimethylbutan-2-yl)carbamate</strong> (10 g, 46.0 mmol) in DCM (50 mL) was added Dess-Martin periodinane (39.0 g, 92 mmol) portion wise at 0 C. and the reaction mixture was stirred at rt for 2 h. The reaction mixture was quenched with 10% NaHCO3, diluted with DCM. The organic layer was separated and washed with 10% NaHCO3. Then the organic layer was filtered through diatomaceous earth (Celite), washed with DCM. The combined filtrate was dried over Na2SO4and concentrated. The crude was dissolved in diethyl ether and again filtered through diatomaceous earth (Celite), washed with diethyl ether. The combined filtrate was concentrated and dried to obtain aldehyde B-1f (10 g) as a white solid.1H NMR (CDCl3, delta=7.26 ppm, 400 MHz): delta 9.82 (s, 1H), 5.13 (br s, 1H), 4.17 (d, J=8.4, 1H), 1.44 (s, 9H), 1.04 (s, 9H). |
10 g | With Dess-Martin periodane; In dichloromethane; at 0 - 20℃; for 2h; | To a solution of (S)-tert-butyl (l-hydroxy-3,3-dimethylbutan-2-yl)carbamate (10 g, 46.0 mmol) in DCM (50 mL) was added Dess-Martin periodinane (39.0 g, 92 mmol) portion wise at 0 C and the reaction mixture was stirred at rt for 2 h. The reaction mixture was quenched with 10% aHC03, diluted with DCM. The organic layer was separated and washed with 10% NaHC03. Then the organic layer was filtered through diatomaceous earth (Celite ), washed with DCM. The combined filtrate was dried over a2S04and concentrated. The crude was dissolved in diethyl ether and again filtered through diatomaceous earth (Celite ), washed with diethyl ether. The combined filtrate was concentrated and dried to obtain aldehyde B-lf (10 g) as a white solid.XH NMR (CDC13, delta = 7.26 ppm, 400 MHz): delta 9.82 (s, 1 H), 5.13 (br s, 1 H), 4.17 (d, J = 8.4, 1 H), 1.44 (s, 9 H), 1.04 (s, 9 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
62% | L-tert-Leucine (1 eq, 10 g) was slowly added to a suspension of lithium aluminum hydride (150 mmol, 1M solution in THF). The reaction mixture was refluxed for 6 h. The mixture was cooled to 0 C. and quenched by addition of 10 mL of aqueous 10% NaOH and 10 mL of water. The mixture was stirred at room temperature for 10 minutes and then treated with di-tert-butylcarbonate (1.1 eq, 18.22 g) and the mixture was stirred at 60 C. overnight. The reaction mixture was filtered through magnesium sulfate. The filtrate was concentrated and the residue was chromatographed on silica gel to give the product 3b in 62% yield. |