Structure of 170229-98-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 170229-98-8 |
Formula : | C8H8BrNO |
M.W : | 214.06 |
SMILES Code : | O=C(N)C1=CC=C(Br)C(C)=C1 |
MDL No. : | MFCD00672914 |
InChI Key : | ZPFPOZMNEKPBIF-UHFFFAOYSA-N |
Pubchem ID : | 7020869 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P301+P312-P302+P352-P304+P340-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.12 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 47.2 |
TPSA ? Topological Polar Surface Area: Calculated from |
43.09 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.68 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.09 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.86 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.27 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.11 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.0 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.82 |
Solubility | 0.323 mg/ml ; 0.00151 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.62 |
Solubility | 0.508 mg/ml ; 0.00237 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.23 |
Solubility | 0.125 mg/ml ; 0.000585 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.12 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.18 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
36% | With polyphosphoric acid; at 170℃; for 3h; | A mixture of 4-Bromo-3-methyl-benzamide (1 g, 4.67 mmol) and vinylene carbonate (0.4 ml, 6.30 mmol) in PPA (15 ml) was heated to 170 C. for 3 h. Upon completion, the reaction was cooled, quenched with water, and extracted with EtOAc. The organic phase was washed with brine, dried over Na2SO4, and concentrated. The crude material was purified by column chromatography to give 2-(4-Bromo-3-methyl-phenyl)-oxazole (400 mg, 36%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
57% | With hydrogenchloride; BH3; borane; In tetrahydrofuran; methanol; water; | (A)4-Bromo-3 -methylbenzylamine.HCl To a solution of borane (1.0 M BH3 in THF, 42 mL) was added a solution of <strong>[170229-98-8]4-bromo-3-methylbenzamide</strong> (1.3 g, 6.0 mmol) in anhydrous THF (20 mL) and the mixture stirred for 6 h at rt. To this was sequentially added dropwise 6N HCl (30 mL), water (30 mL), and MeOH (150 mL) and the mixture stirred for 12 h. After the resulting mixture was concentrated to 50 mL, the precipitates were filtered off and the filtrate concentrated in vacuo. The residue was purified by column chromatography (EtOAc: n-hexane, 1:4) to give the title compound as a yellow oil (0.81 g, 57%). 1H NMR (CD3OD) δ7.60 (d, 1H), 7.37 (s, 2H), 7.18 (d, 1H), 4.04 (s, 2H), 2.41 (s, 3H). FAB MS: 201 [M+1]+ |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
8.9g (89%) | In N-methyl-acetamide; methanol; dichloromethane; water; | EXAMPLE 21 N- (3, 4-Dimethyl-5-isoxazolyl) -2'-›(formylamino)[methyl]-4'-(2-oxazolyl)›1,1'-[biphenyl]-2-sulfonamide STR48 A. 4-Bromo-3-methylbenzamide To a solution of 10 g (46.5 mmol) of 4-bromo-3-methyl benzoic acid in 200 mL of dichloromethane under argon, 30 mL of 2M solution of oxalyl chloride in dichloromethane w as added. Four drops of dimethylformamide was then added and the mixture was stirred at room temperature for 1 hour. The soltion was evaporated and dried in vacuo. The residue was dissolved in 100 mL of methanol, and 25 mL of 28% aqueous ammonium hydroxide was added to the mixture. The solution was stirred at room temperature for 3 hours, and then diluted with 500 mL of water. The resulting white solid was filtered, washed with water and dried to afford 8.9g (89%) of compound A. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
6.8 g (100%) | With ammonium chloride; In methanol; dichloromethane; toluene; | A. 4-Bromo-3-methylbenzenecarboxamidamide To a suspension of 2.73 g (51.0 mmol) of ammonium chloride in 40 mL of toluene at 0 C., a 2.0M solution of trimethyl aluminum (25.5 mL) was added over 5 minutes. The mixture was then slowly warmed to room temperature and stirred for an additional 2 hrs. This mixture was then added to a solution of 5.0 g (25.5 mmol) of 4-bromo-3-methyl benzonitrile in 15 mL of toluene under argon, and the mixture was heated at 80 C. for 6 days. The mixture was then cooled to room temperature and added to a slurry of silica gel (100 g) in 200 mL of CH2 Cl2 and filtered. The silica was washed with 400 mL of methanol and the combined filtrate was evaporated to provide 6.8 g (100%) of the title compound of this step as a white solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium carbonate; triethylamine;PdCl2(PPh3)2; In 1,4-dioxane; ethyl acetate; | Example 225 3'-(5-Carbamimidoyl-2-methylsulfanyl-thiophene-3-sulfonyl)-2-methyl-biphenyl-4-carboxylic acid amide trifluoroacetate Following the same procedure as in Example 220, step a, reaction of 4-bromo-3-methyl-benzamide (200 mg, 0.93 mmol), 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.41 mL, 2.8 mmol, Aldrich Chemical Company), PdCl2(PPh3)2 (65 mg, 0.093 mmol, Strem Chemicals Inc, Newburyport, Mass.), Et3N (700 μL, 46 mmol), and dioxane (5 mL) afforded 140 mg of a brown oil (58%) after purification (SiO2, flash elution: 30% EtOAc in hexanes. The above boronate ester (140 mg, 0.54 mmol) was reacted according to the procedure used in Example 1, step c, with [4-(3-bromo-benzenesulfonyl)-5-methylsulfanyl-thiophen-2-yl]-imino-methyl}-carbamic acid tert-butyl ester (88 mg, 0.18 mmol, as prepared in Example 27, step c), tetrakis(triphenylphosine)palladium(0) (52 mg, 0.05 mmol, Strem Chemicals Inc, Newburyport, Mass.), Na2CO3 (0.7 mL, 2 M), and toluene/EtOH mixture (2:1, 2.1 mL) to afford [4-(4'-Carbamoyl-2'-methyl-biphenyl-3-sulfonyl)-5-methylsulfanyl-thiophen-2-yl]-imino-methyl}-carbamic acid tert-butyl ester after purification (preparative TLC, 1:3 EtOAc/hexanes, 3*1000μ SiO2 plate). ESI-MS (m/z): Calcd. for C25H27N3O5S3: 545.7; found: 446.1 (M-Boc). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium carbonate;tetrakis(triphenylphosphine) palladium(0); In 1,2-dimethoxyethane; water; at 95℃; for 48h; | Preparation of Intermediate 4'-formyl-2-methylbiphenyl-4-carboxamide (l-4a):4-Bromo-3-methyl-benzamide (15.02 g), 70 mmol), 4-formylphenylboronic acid (14.03g, 91 mmol) and palladium tetrakis(triphenylphosphine) (5.03 g, 4 mmol) were combined in 1 ,2-dimethoxy ethane (5 ml) and 2M aqueous sodium carbonate (2.5 ml). After heating at 950C for 48 hours, the reaction mixture was cooled to ambient temperature and passed through a plug of Celite, rinsing with 1 ,2-dimethoxy ethane. The volatiles were removed under reduced pressure to yield 16g of the title compound (Ma) as a colorless solid.1H NMR (400 MHz, Chloroform-d) δ ppm 2.31 (s, 3 H), 5.66 (s, 1 H), 6.10 (s, 1 H), 7.30 (d, J=7.89 Hz, 1 H), 7.48 (d, J=8.10 Hz, 2 H), 7.67 (d, J=7.89 Hz, 1 H), 7.77 (s, 1 H), 7.95 (d, J^7.89 Hz, 2 H), 10.07 (s, 1 H). Mass Spec: (m/z+1 = 240) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
30% | With tetrabutyl ammonium fluoride;bis-triphenylphosphine-palladium(II) chloride; In tetrahydrofuran; ethanol;Heating / reflux; | A mixture of 5-Ethynyl-2-trifluoromethoxy-benzoic acid (3g), 4-Bromo-3-methylbenzamide (2.79 g), Pd(PPh3)2Cl2 (460 mg), TBAF (1M in THF, 39.11 ml) in THF (30 ml) and ethanol (15 ml) was stirred under reflux overnight. The reaction was cooled to ambient temperature, filtered and the solvent was evaporated. The residue was taken up in ethyl acetate / water and extracted with ethyl acetate. The combined organic layers were evaporated and the crude mixture was purified by flash chromatography to obtain the title compound in 30% yield. 1H-NMR (MeOD): 8.13 d (J = 2.1 Hz, 1H); 7.83 m (2H); 7.73 m (1H); 7.64 d (J = 8.1 Hz, 1H); 7.50 m (1H); 2.61 s (3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With ammonium hydroxide; at 0℃; for 0.0333333h; | General procedure: To 2-bromo-3-methylbenzoic acid (21, 159 g, 739 mmol) in dichloromethane (1000 mL) was added triethylamine (TEA, 119.7 mL, 813 mmol, 1.1 equiv) followed by iso-butyl chloroformate (101.5 mL, 813 mmol, 1.1 equiv) in dichloromethane (DCM, 200 mL) at 0 C over 10 min. Concentrated ammonia water (323 mL) was then added at 0 C over 2 min. The reaction mixture was poured into water (200 mL), cooled to rt and filtered. The solid was washed with water (2 × 300 mL), 0.5 N HCl (2 × 150 mL) and dried to give the amide as a solid (120 g, yield 76%). To the solution of the amide obtained (50 g, 233.6 mmol) in DMF (300 mL) was added 2,4,6-trichloro-1,3,5-triazine (64.6 g, 350.4 mmol, 1.5 equiv) dropwise at 0 C and the reaction was stirred at rt overnight. To the reaction was added 600 mL of water and the reaction was stirred for 30 min. All insoluble was removed by filtration and the solid was triturated with ethyl acetate (EA, 3 × 100 mL) for 40 min and filtered. The filtrate was washed with saturated sodium carbonate (3 × 200 mL), saturated sodium chloride (200 mL) and dried over anhydrous sodium sulfate.The solvent was removed under reduced pressure to give 22 as a solid (42 g, yield 87.3%). To a solution of 22 (20 g, 102.2 mmol, 1 equiv) in CCl4 (200 mL) was added NBS (18.2 g, 102.0 mmol, 1.0 equiv), Bz2O2 (0.15 g, 0.6 mmol, 0.006 equiv). The reaction was refluxed overnight under N2, cooled and filtered. The filtrate was crystallized at 0 C to provide the brominated intermediate (15 g, yield 53.6%). To a solution of the brominated intermediate (90 g, 327.3 mmol) in DMF (760 ml) was added KOAc (38.6 g, 393.1 mmol, 1.2 equiv). The reaction mixture was stirred at 80 C for 1 h, cooled and water (1 L) was added. The mixture was extracted with EA (1 L). The organic layer was washed with 0.5 N HCl (3 ×200 mL), 2% NaHCO3 (200 mL) and dried over anhydrous sodium sulfate. The solvent was removed to give 23 as a yellow solid (77.3 g, yield 92.9%). 1H NMR of 23 (500 MHz, CDCl3): δ 2.16 (s, 3H), 5.21 (s, 2H), 7.43-7.46 (t, 1H,), 7.63 (m, 2H) ppm. To a solution of 23 (20 g, 78.8 mmol) in 1,4-dioxane (400 mL) was added bis(pinacolato)diboron (30 g, 118.1 mmol, 1.5 equiv) and KOAc (33.2 g, 338.1 mmol, 4.3 equiv). After being de-gassed and backfilled with nitrogen, Pd(dppf)Cl2 (3.2 g, 3.935 mmol, 0.05 equiv) was added. The reaction was refluxed overnight under nitrogen, cooled and filtered. The filtrate was concentrated and the residue was purified by silica gel column chromatography eluted with petroleum ether (PE)/EA = 5:1 to give 24 as red oil (29 g, crude yield 100% with 80% purity). 1H NMR of 24 (500 MHz, DMSO-d6): δ 1.42 (s, 12H), 2.20 (s, 3H), 5.25 (s, 2H), 7.44-7.49 (t, 1H), 7.57-7.64 (m, 2H) ppm. To a solution of 24 (29 g) in MeOH (100 mL) was added a solution of NaOH in MeOH (7.0 g/130 mL, 175.8 mmol, 2.3 equiv) and the reaction was stirred for 2 h at rt. The reaction mixture was concentrated under vacuum and the residue was dissolved in THF (150 mL) and 2 N HCl (138 mL, 69 mmol, 0.9 equiv). The reaction was stirred at rt for 50 min, concentrated and filtered. The solid was washed with water (3 × 20 mL) and petroleum ether (3 × 20 mL) to provide 25 (7.6 g, yield 62%). 1H NMR of 25 (500 MHz, DMSO-d6): δ 5.05 (s, 2H), 7.63-7.68 (t, 1H), 7.73-7.81 (m, 2H) ppm. To Raney Ni (0.849 g, 14.5 mmol, 2.3 equiv) in formic acid (10 mL) and water (2 mL) was added 25 (1 g, 6.29 mmol) at rt. The reaction was stirred at 100 C for 1 h, cooled and then filtered. The solvent was removed to give a solid that was purified by silica gel column chromatography eluted with CH2Cl2 to give 26 as a solid (0.714 g, yield 70%). 1H NMR of 26 (500 MHz, CDCl3): δ 10.03 (s, 1H), 8.08 (s, 1H), 7.86 (t, 1H), 7.63-7.71 (m, 2H), 5.20 (s, 2H) ppm. To a mixture of HCOOH (116.2 g, 10.0 equiv) and TEA (102.2 g, 4.0 equiv) were added 26 (40.9 g, 252.5 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (43.7 g, 1.2 equiv). The resulting mixture was refluxed for 15 h and cooled to rt. Hydrochloric acid (2 N, 320 mL) was added into the mixture that was then extracted with ethyl acetate twice (2 × 250 mL). The combined organic layer was washed with 2 N HCl (160 mL) and rotary evaporated to give the crude product that was recrystallized from DMF and 2 N HCl (34:204 mL) providing compound 1 as a white solid (15.6 g, yield 30%). An additional recrystallization from DMF and 2 N HCl (16:96 mL) was performed to give high purity product (12.9 g). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With 1,3,5-trichloro-2,4,6-triazine; at 0 - 20℃; | General procedure: To 2-bromo-3-methylbenzoic acid (21, 159 g, 739 mmol) in dichloromethane (1000 mL) was added triethylamine (TEA, 119.7 mL, 813 mmol, 1.1 equiv) followed by iso-butyl chloroformate (101.5 mL, 813 mmol, 1.1 equiv) in dichloromethane (DCM, 200 mL) at 0 C over 10 min. Concentrated ammonia water (323 mL) was then added at 0 C over 2 min. The reaction mixture was poured into water (200 mL), cooled to rt and filtered. The solid was washed with water (2 × 300 mL), 0.5 N HCl (2 × 150 mL) and dried to give the amide as a solid (120 g, yield 76%). To the solution of the amide obtained (50 g, 233.6 mmol) in DMF (300 mL) was added 2,4,6-trichloro-1,3,5-triazine (64.6 g, 350.4 mmol, 1.5 equiv) dropwise at 0 C and the reaction was stirred at rt overnight. To the reaction was added 600 mL of water and the reaction was stirred for 30 min. All insoluble was removed by filtration and the solid was triturated with ethyl acetate (EA, 3 × 100 mL) for 40 min and filtered. The filtrate was washed with saturated sodium carbonate (3 × 200 mL), saturated sodium chloride (200 mL) and dried over anhydrous sodium sulfate.The solvent was removed under reduced pressure to give 22 as a solid (42 g, yield 87.3%). To a solution of 22 (20 g, 102.2 mmol, 1 equiv) in CCl4 (200 mL) was added NBS (18.2 g, 102.0 mmol, 1.0 equiv), Bz2O2 (0.15 g, 0.6 mmol, 0.006 equiv). The reaction was refluxed overnight under N2, cooled and filtered. The filtrate was crystallized at 0 C to provide the brominated intermediate (15 g, yield 53.6%). To a solution of the brominated intermediate (90 g, 327.3 mmol) in DMF (760 ml) was added KOAc (38.6 g, 393.1 mmol, 1.2 equiv). The reaction mixture was stirred at 80 C for 1 h, cooled and water (1 L) was added. The mixture was extracted with EA (1 L). The organic layer was washed with 0.5 N HCl (3 ×200 mL), 2% NaHCO3 (200 mL) and dried over anhydrous sodium sulfate. The solvent was removed to give 23 as a yellow solid (77.3 g, yield 92.9%). 1H NMR of 23 (500 MHz, CDCl3): δ 2.16 (s, 3H), 5.21 (s, 2H), 7.43-7.46 (t, 1H,), 7.63 (m, 2H) ppm. To a solution of 23 (20 g, 78.8 mmol) in 1,4-dioxane (400 mL) was added bis(pinacolato)diboron (30 g, 118.1 mmol, 1.5 equiv) and KOAc (33.2 g, 338.1 mmol, 4.3 equiv). After being de-gassed and backfilled with nitrogen, Pd(dppf)Cl2 (3.2 g, 3.935 mmol, 0.05 equiv) was added. The reaction was refluxed overnight under nitrogen, cooled and filtered. The filtrate was concentrated and the residue was purified by silica gel column chromatography eluted with petroleum ether (PE)/EA = 5:1 to give 24 as red oil (29 g, crude yield 100% with 80% purity). 1H NMR of 24 (500 MHz, DMSO-d6): δ 1.42 (s, 12H), 2.20 (s, 3H), 5.25 (s, 2H), 7.44-7.49 (t, 1H), 7.57-7.64 (m, 2H) ppm. To a solution of 24 (29 g) in MeOH (100 mL) was added a solution of NaOH in MeOH (7.0 g/130 mL, 175.8 mmol, 2.3 equiv) and the reaction was stirred for 2 h at rt. The reaction mixture was concentrated under vacuum and the residue was dissolved in THF (150 mL) and 2 N HCl (138 mL, 69 mmol, 0.9 equiv). The reaction was stirred at rt for 50 min, concentrated and filtered. The solid was washed with water (3 × 20 mL) and petroleum ether (3 × 20 mL) to provide 25 (7.6 g, yield 62%). 1H NMR of 25 (500 MHz, DMSO-d6): δ 5.05 (s, 2H), 7.63-7.68 (t, 1H), 7.73-7.81 (m, 2H) ppm. To Raney Ni (0.849 g, 14.5 mmol, 2.3 equiv) in formic acid (10 mL) and water (2 mL) was added 25 (1 g, 6.29 mmol) at rt. The reaction was stirred at 100 C for 1 h, cooled and then filtered. The solvent was removed to give a solid that was purified by silica gel column chromatography eluted with CH2Cl2 to give 26 as a solid (0.714 g, yield 70%). 1H NMR of 26 (500 MHz, CDCl3): δ 10.03 (s, 1H), 8.08 (s, 1H), 7.86 (t, 1H), 7.63-7.71 (m, 2H), 5.20 (s, 2H) ppm. To a mixture of HCOOH (116.2 g, 10.0 equiv) and TEA (102.2 g, 4.0 equiv) were added 26 (40.9 g, 252.5 mmol) and 2,2-dimethyl-1,3-dioxane-4,6-dione (43.7 g, 1.2 equiv). The resulting mixture was refluxed for 15 h and cooled to rt. Hydrochloric acid (2 N, 320 mL) was added into the mixture that was then extracted with ethyl acetate twice (2 × 250 mL). The combined organic layer was washed with 2 N HCl (160 mL) and rotary evaporated to give the crude product that was recrystallized from DMF and 2 N HCl (34:204 mL) providing compound 1 as a white solid (15.6 g, yield 30%). An additional recrystallization from DMF and 2 N HCl (16:96 mL) was performed to give high purity product (12.9 g). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With ammonium hydroxide; | General procedure: To a slurry of 3-bromo-4-methylbenzoic acid (2.53 g, 85% purity; 10 mmol) in CH2Cl2(20 mL) at 0 C., under N2, was added oxalyl chloride (0.91 mL; 10.5 mmol), followed by dropwise addition of DMF (0.04 mL; 0.5 mmol). The mixture was stirred 5 min at 0 C., 15 min at rt, and then heated at reflux under N2for 1 h. The mixture was cooled, and poured into NH4OH (30 mL; ca. 30% NH3). Precipitated solids were collected by filtration and purified by flash chromatography (EtOAc/hexanes), affording the title compound as a colorless solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
71% | With (1,1'-bis(diphenylphosphino)ferrocene)palladium(II) dichloride; potassium acetate; In 1,4-dioxane; at 100℃; for 3h;Sealed tube; Inert atmosphere; | To a sealed tube was added 4-bromo-3-methyl-benzamide (1.0 g, 4.67 mmol), bis(pinacolato)diboron (1.4 g, 5.61 mol), potassium acetate (1.4 g, 14.01 mmol), Pd(dppf)Cl2 (341 mg, 0.47 mmol) and 1,4-dioxane (10 mL). The mixture was bubbled through with N2 for 2 minutes and stirred at 100 C. for 3 hours. The mixture was concentrated in vacuo and purified by silica gel chromatography (petroleum ether/ethyl acetate, 1:1 to 0:100) to afford 3-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (920 mg, 71% yield) as a white solid. LCMS (ESI) [M+H]+=262.2. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With tetrakis(triphenylphosphine) palladium(0); sodium carbonate; In acetonitrile; for 1.83333h;Inert atmosphere; | General procedure: A mixture of 4-bromobenzaldehyde (2.78 g; 15.0 mmol), [3-(aminocarbonyl)-phenyl]boronic acid (2.72 g; 16.5 mmol), PdCl2(dppf).CH2Cl2(0.306 g; 0.38 mmol), DME (25 mL) and Na2CO3(25 mL of a 2M solution) was sparged 20 min with N2and heated under reflux for 90 min (consumption of aryl bromide observed by LC/MS). Upon cooling, the mixture was partitioned between EtOAc/H2O, layers were separated, and the aqueous layer was extracted with EtOAc (×2). Combined organics were washed (H2O, brine), dried over Na2SO4and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc/hexanes), affording the title compound as a tan solid. Used IV-4 and 3- formylphenyl boronic acid. Note 2, 4. Note 2 Used Pd(PPh3)4as catalyst (instead of PdCl2(dppf).CH2Cl2). Note 4 Used acetonitrile/0.4M Na2CO3instead of DME/2M Na2CO3. |