Structure of 13321-74-9
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 13321-74-9 |
Formula : | C9H11BrO2 |
M.W : | 231.09 |
SMILES Code : | CC1=CC(OC)=C(Br)C=C1OC |
MDL No. : | MFCD00666999 |
InChI Key : | YDRBZEYUYXQONG-UHFFFAOYSA-N |
Pubchem ID : | 643375 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319 |
Precautionary Statements: | P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.33 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 52.09 |
TPSA ? Topological Polar Surface Area: Calculated from |
18.46 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.75 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.19 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.77 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.51 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.96 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.84 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.52 |
Solubility | 0.0697 mg/ml ; 0.000302 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.25 |
Solubility | 0.13 mg/ml ; 0.000563 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.9 |
Solubility | 0.0292 mg/ml ; 0.000126 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.44 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.54 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With bromine; sodium acetate; acetic acid; for 1.41667h;Inert atmosphere; | 2-Bromo-5-methylcyclohexa-2,5-diene-1,4-dione (23). To a solution of toluquinol (1) (2.5 g, 20.14mmol,1.0 equiv.) in acetone (15 mL) was added K2CO3 (14 g, 100.70 mmol, 5.0 equiv.) and Me2SO4 (5.7 mL,60.41 mmol, 3.0 equiv.) and the reaction mixture was stirred for 3 h. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O. The organic phasewas washed with brine, dried over MgSO4, filtered, and the solvent removed under reduced pressureto obtain the corresponding dimethoxy derivative (~20 mmol), which was used in the next stepswithout purification. To a solution of the dimethoxy derivative obtained above (~20 mmol) and NaOAc(3.3 g, 40.28 mmol, 2.0 equiv.) in AcOH (20 mL) was added bromine (1.2 mL, 2.15 mmol, 1.1 equiv.)over 25 min and, after the addition, the reaction mixture was stirred for 1 h. Then, the reaction mixturewas quenched by a slow addition of a saturated aqueous NaHCO3 solution at 0 C. The aqueousphase was then extracted with EtOAc and the organic phase washed with brine, dried over MgSO4,ltered, and the solvent removed under reduced pressure to obtain the corresponding bromo derivative(~20 mmol), which was used in the next step without purication. The bromo derivative obtainedabove (~20 mmol) was dissolved in CH3CN (35 mL). Then, CAN (28 g, 50.34mmol, 2.5 equiv.) and H2O(20 mL) were added and the reaction mixture was stirred for 1 h at 25 C. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O twice. The combinedorganic phases were washed with brine, dried over MgSO4, filtered, and the solvent removed underreduced pressure. The residue was purified by flash column chromatography (silica gel, 1% EtOAc inhexanes) to obtain compound 23 (1.5 g, 37% over 3 steps) as an orange solid [13]: Rf = 0.45 (silica gel,20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) delta 7.29 (s, 1 H), 7.26 (s, 2 H), 2.08 (d, J = 1.6 Hz,3 H); 13C NMR (100 MHz, CDCl3) delta 185.1, 179.5, 146.5, 138.1, 137.5, 132.6, 15.7. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
1.5 g | With ammonium cerium (IV) nitrate; In water; acetonitrile; at 25℃; for 1h;Inert atmosphere; | 2-Bromo-5-methylcyclohexa-2,5-diene-1,4-dione (23). To a solution of toluquinol (1) (2.5 g, 20.14mmol,1.0 equiv.) in acetone (15 mL) was added K2CO3 (14 g, 100.70 mmol, 5.0 equiv.) and Me2SO4 (5.7 mL,60.41 mmol, 3.0 equiv.) and the reaction mixture was stirred for 3 h. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O. The organic phasewas washed with brine, dried over MgSO4, filtered, and the solvent removed under reduced pressureto obtain the corresponding dimethoxy derivative (~20 mmol), which was used in the next stepswithout purification. To a solution of the dimethoxy derivative obtained above (~20 mmol) and NaOAc(3.3 g, 40.28 mmol, 2.0 equiv.) in AcOH (20 mL) was added bromine (1.2 mL, 2.15 mmol, 1.1 equiv.)over 25 min and, after the addition, the reaction mixture was stirred for 1 h. Then, the reaction mixturewas quenched by a slow addition of a saturated aqueous NaHCO3 solution at 0 C. The aqueousphase was then extracted with EtOAc and the organic phase washed with brine, dried over MgSO4,ltered, and the solvent removed under reduced pressure to obtain the corresponding bromo derivative(~20 mmol), which was used in the next step without purication. The bromo derivative obtainedabove (~20 mmol) was dissolved in CH3CN (35 mL). Then, CAN (28 g, 50.34mmol, 2.5 equiv.) and H2O(20 mL) were added and the reaction mixture was stirred for 1 h at 25 C. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O twice. The combinedorganic phases were washed with brine, dried over MgSO4, filtered, and the solvent removed underreduced pressure. The residue was purified by flash column chromatography (silica gel, 1% EtOAc inhexanes) to obtain compound 23 (1.5 g, 37% over 3 steps) as an orange solid [13]: Rf = 0.45 (silica gel,20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) delta 7.29 (s, 1 H), 7.26 (s, 2 H), 2.08 (d, J = 1.6 Hz,3 H); 13C NMR (100 MHz, CDCl3) delta 185.1, 179.5, 146.5, 138.1, 137.5, 132.6, 15.7. |