Home Cart Sign in  
Chemical Structure| 13070-25-2 Chemical Structure| 13070-25-2

Structure of 13070-25-2

Chemical Structure| 13070-25-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 13070-25-2 ]

CAS No. :13070-25-2
Formula : C7H5BrO2
M.W : 201.02
SMILES Code : O=C1C(Br)=CC(C(C)=C1)=O
MDL No. :MFCD00189378

Safety of [ 13070-25-2 ]

Application In Synthesis of [ 13070-25-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 13070-25-2 ]

[ 13070-25-2 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 13321-74-9 ]
  • [ 13070-25-2 ]
YieldReaction ConditionsOperation in experiment
1.5 g With ammonium cerium (IV) nitrate; In water; acetonitrile; at 25℃; for 1h;Inert atmosphere; 2-Bromo-5-methylcyclohexa-2,5-diene-1,4-dione (23). To a solution of toluquinol (1) (2.5 g, 20.14mmol,1.0 equiv.) in acetone (15 mL) was added K2CO3 (14 g, 100.70 mmol, 5.0 equiv.) and Me2SO4 (5.7 mL,60.41 mmol, 3.0 equiv.) and the reaction mixture was stirred for 3 h. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O. The organic phasewas washed with brine, dried over MgSO4, filtered, and the solvent removed under reduced pressureto obtain the corresponding dimethoxy derivative (~20 mmol), which was used in the next stepswithout purification. To a solution of the dimethoxy derivative obtained above (~20 mmol) and NaOAc(3.3 g, 40.28 mmol, 2.0 equiv.) in AcOH (20 mL) was added bromine (1.2 mL, 2.15 mmol, 1.1 equiv.)over 25 min and, after the addition, the reaction mixture was stirred for 1 h. Then, the reaction mixturewas quenched by a slow addition of a saturated aqueous NaHCO3 solution at 0 C. The aqueousphase was then extracted with EtOAc and the organic phase washed with brine, dried over MgSO4,ltered, and the solvent removed under reduced pressure to obtain the corresponding bromo derivative(~20 mmol), which was used in the next step without purication. The bromo derivative obtainedabove (~20 mmol) was dissolved in CH3CN (35 mL). Then, CAN (28 g, 50.34mmol, 2.5 equiv.) and H2O(20 mL) were added and the reaction mixture was stirred for 1 h at 25 C. After this time, the reactionmixture was diluted with water and the aqueous phase was extracted with Et2O twice. The combinedorganic phases were washed with brine, dried over MgSO4, filtered, and the solvent removed underreduced pressure. The residue was purified by flash column chromatography (silica gel, 1% EtOAc inhexanes) to obtain compound 23 (1.5 g, 37% over 3 steps) as an orange solid [13]: Rf = 0.45 (silica gel,20% EtOAc in hexanes); 1H NMR (400 MHz, CDCl3) delta 7.29 (s, 1 H), 7.26 (s, 2 H), 2.08 (d, J = 1.6 Hz,3 H); 13C NMR (100 MHz, CDCl3) delta 185.1, 179.5, 146.5, 138.1, 137.5, 132.6, 15.7.
  • 2
  • [ 36138-76-8 ]
  • [ 13070-25-2 ]
 

Historical Records

Technical Information

Categories