Structure of 89415-54-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 89415-54-3 |
Formula : | C6H8BrN3 |
M.W : | 202.05 |
SMILES Code : | NC1=CC(Br)=CN=C1NC |
MDL No. : | MFCD07375019 |
InChI Key : | BKWVCWSASGSHSS-UHFFFAOYSA-N |
Pubchem ID : | 15194032 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 45.65 |
TPSA ? Topological Polar Surface Area: Calculated from |
50.94 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.53 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.18 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.29 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.72 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.99 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.14 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.21 |
Solubility | 1.23 mg/ml ; 0.00611 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.85 |
Solubility | 2.88 mg/ml ; 0.0143 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.96 |
Solubility | 0.221 mg/ml ; 0.00109 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.69 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.04 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
26.2% | In ethanol; | e. 4-[(7-bromo-4-methyl-3-oxo-3,4-dihydro-pyrido[2,3-b]-pyrazin-2-yl)methyl]-benzonitrile Prepared analogously to Example 7f from <strong>[89415-54-3]3-amino-5-bromo-2-methylamino-pyridine</strong> and 3-(4-cyano-phenyl)-2-oxo-propionic acid in ethanol. Yield: 26.2% of theory, Rf value: 0.68 (silica gel; methylene chloride/ethanol/glacial acetic acid=4:1:0,01). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
~ 100% | Step 2. 5-bromo-N2-methylpyridine-2,3-diamine; The crude material was dissolved in acetic acid (10 ml) and water (2.5 ml) and iron (445 mg, 7.97 mmol) was added. The reaction was stirred at room temperature for 40 minutes and then poured into 5 N NaOH (40 ml), and the suspension was cooled briefly in an ice water bath. Then, the suspension was filtered through a Celite (diatomaceous earth), pad, which was washed with water, EtOAC, and 10: 1 DCM / MeOH. The biphasic solution was separated, and the aqueous phase was extracted with 10: 1 DCM / MeOH. The Celite (diatomaceous earth), pads were washed again with MeOH, and this filtrate was combined with the organic extracts, concentrated, and dried under high vacuum in water bath (~ 60 C) to afford 5-bromo-N2-methylpyridine-2,3-diamine (427 mg, ~ 100%). LCMS supports structure of compound (peak at 0.7 minutes with m/e of 202 and 204). Compound isolated in ~ 100% yield over 2 steps. MS (ESI pos. ion) m/z: 202 (MH+, 79Br), 204 (MH+, 81Br). Calculated exact mass for C6H8BrN3 201 (79Br), 203 (81Br). | |
92.5% | With hydrogen;aluminum nickel; In ethyl acetate; | d. 3-amino-5-bromo-2-methylamino-pyridine Prepared analogously to Example 3d from 5-bromo-3-nitro-2-methylamino-pyridine and Raney nickel/hydrogen in ethyl acetate. Yield: 92.5% of theory, Rf value: 0.18 (silica gel; methylene chloride/ethanol=19:1). |
77% | 63b (2.95 g, 1 eq) is dissolved in THF (51 mL) and 1N aq HCl (50 mL, 3.9 eq) and tin powder (2.57 g, 1.70 eq) are added and stirred at RT for 3 h. 1N NaOH (50 mL) is added, followed by brine. The mixture is extracted with EtOAc (3×). The organic layer is washed with brine, dried over Na2SO4, filtered and concentrated under vacuum. The obtained 63c is dried under high vacuum and used in the subsequent step without further purification (1.98 g, 77%). |
A suspension of (5-brorno-3-nitro-py?din-2-yl)-methylamine (Stage 67.1.5, 4.58 g, 19.75 mmol) and tin dichloride dihydrate (Acros, Basel, Switzerland, 13.38 g, 59 3 mmol) in 200 ml of THF was heated at 7OC for 220 mialpha The solvent was removed by evaporation and the residue taken in CH2CI2 (100 ml) and 5 M aqueous NaOH (50 ml) and stirred until all the solid was dissolved. The organic layer was separted and the aqueous layer was extracted with CH2CI2 The combined organic layers were washed with brine, dried over Na?SO4l ftltered and evaporated to give the tie compound as a brown solid. (HPLC tR 1 69 min (Method A), M+H = 202, 204 MS-ES) | ||
With tin(II) chloride dihdyrate; In ethyl acetate; for 3.5h;Reflux; | [00134] SnCI2*2H2O (4.71 g, 20.9 mmol) is added to a solution of (5-bromo-3-nitro- pyridin-2-yl)-methyl-amine (0.97 g, 4.2 mmol) in EtOAc and the mixture is heated to reflux for 3.5 h. The mixture is then cooled, diluted with saturated aqueous NaHCO3 solution and extracted with EtOAc. The organic phase is dried over anhydrous Na2SO4 and evaporated to dryness to give sufficiently pure 5-Bromo-N*2*-methyl-pyridine-2,3- diamine. | |
With iron; ammonium chloride; In ethanol; water; for 2h;Reflux; | A mixture of the 5-bromo-/V-methyl-3-nitro-2-pyridinamine (1.14 g, 4.21 mmol assumed). and ammonium chloride (1.103 g, 20.62 mmol) in EtOH^O (8.5 mL of a 1 :1 solution) was stirred as iron (1 .152 g, 20.62 mmol) was added. The mixture was heated to reflux for ~ 2 hours. The mixture was allowed to cool to room temperature then diluted with EtOH and filtered through Celite. The filtrate was concentrated to yield a black tar which was diluted with EtOH then concentrated three times. The residue was slurried in EtOH then filtered. The filtrate was concentrated to yield a black solid which was dissolved in pyridine (15.1 mL). N, N dimethylaminopyridine (0.060 g, 0.49 mmoL) was added followed bybenzenesulfonylchlonde (0.63 mL, 4.91 mmol). The resulting mixture was stirred for one hour under a nitrogen atmosphere. The mixture was then concentrated. The residue diluted with EtOAc, washed with water two times, then saturated NaHC03 followed by brine, dried(Na2S0 ) and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes). Fractions containing the product were combined and concentrated to yield A/-[5-bromo-2-(methylamino)-3-pyridinyl]benzenesulfonamide (0.859 g, 2.51 mmol 60% over 3 steps) as a grey solid. 1H NMR (400 MHz, DMSO-d6) delta ppm 9.58 (br. s., 1 H) 7.94 (br. s., 1 H) 7.75 - 7.64 (m, 3 H) 7.62 - 7.55 (m, 2 H) 6.92 (d, J=2.3 Hz, 1 H) 6.25 (br. s., 1 H) 2.68 (d, J=4.5 Hz, 3 H) LCMS: m/z 344 (M+1 ). | |
With tin(II) chloride dihdyrate; In ethanol; at 20 - 80℃; for 4h; | 5-Bromo-N2-methylpyridine-2,3-diamineTo a solution of 5-bromo-N-methyl-3-nitropyridin-2-amine (800 mg, 3.45 mmol) in EtOH (20 ml_) at RT, SnCI2-2 H20 (31 12 mg, 13.79 mmol) was added. The reaction mixture was stirred for the 4 h at 80 C. The solvent was evaporated under reduce pressure and saturated NaHC03solution was added to pH=7 then was extracted with EtOAc (2x), and the combined organic layers were washed once with brine. The organic layer was concentrated to give 720 mg (103%) of the title compound. LC-MS m/z 202.1 , 203.9 (M+H)+, 0.33 (ret. time). | |
With ammonium metavanadate; platinum on carbon; hydrogen; hypophosphorous acid; In tetrahydrofuran; ethanol; water; at 20 - 45℃; under 15201.0 Torr; for 1.5h; | Into a pressure reactor was charged with Pt/C (5% wt, 78.7 g, 10.6% w/w), aq. H3PO2 (50 % wt, 5.8 g), NH4VO3 (2.1 g), THF/EtOH (V/V = 1/1, 12.1 L) and 5-bromo-N-methyl-3-nitropyridin-2-amine (740 g, 3.19 mol). The reactor was purged with hydrogen and pressurized to 20 atm followed by stirring at 20 to 30 C for about 0.5 h. Then the mixture was re-pressurized to 20 atm with hydrogen and stirred at 30 to 45 C for 1 h. The reaction mixture was cooled to room temperature and filtered through a pad of Celite followed by washing the cake with THF (1 L). The combined filtrate was concentrated at 40 to 45 C under vacuum. Solvent chasing distillation by n-heptane (1 L × 2) and dilution with ACN (3 L) afforded a dark solution of the title compound in ACN which was used in the next step without further purification |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Step 3. 5-bromo-N3-isopropyl-N2-methylpyridine-2.3-diamine and 6-bromo-2,2,3-trimethyl-2.3-dihydro- 1H-imidazor4.5-blpyridine; <strong>[89415-54-3]5-bromo-N2-methylpyridine-2,3-diamine</strong> (54.4 mg, 0.269 mmol) was dissolved in isopropyl acetate (1.5 ml) and acetone (23 mul, 0.31 mmol), trifluoroacetic acid (0.045 ml, 0.58 mmol), and sodium triacetoxyborohydride (64 mg, 0.30 mmol) were added. The reaction was stirred under nitrogen at room temperature for 4 hours, and then more acetone was added (0.040 ml) along with TFA (0.090 ml) and isopropyl acetate (0.5 ml). The reaction was then stirred overnight. This reaction was repeated on a larger scale using <strong>[89415-54-3]5-bromo-N2-methylpyridine-2,3-diamine</strong> (288 mg, 1.43 mmol), 2,2,2-trifluoroacetic acid (0.30 ml, 3.9 mmol), acetone (0.13 ml, 1.8 mmol), and sodium triacetoxyborohydride (352 mg, 1.66 mmol). Then, both reactions were poured into water (25 ml), and solid sodium hydroxide was added to raise the pH to about 10. The layers were separated, and the aqueous phase was extracted with EtOAc. The organic extracts were combined, dried over sodium sulfate, filtered, concentrated, and dried under high vacuum. To afford 5-bromo-N3-isopropyl-N2-methylpyridine-2,3-diamine and 6-bromo-2,2,3- trimethyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine (399 mg, 97% combined yield). 5-bromo-N3-isopropyl-N2-methylpyridine-2,3-diamine: MS (ESI pos. ion) m/z: 244 (MH+, 79Br), 246 (MH+, 81Br). Calculated exact mass for C9H14BrN3 243 (79Br), 245 (81Br). 6-bromo-2,2,3-trimethyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine: MS (ESI pos. ion) m/z: 242 (MH+, 79Br), 244 (MH+, 81Br). Calculated exact mass for C9H12BrN3 241 (79Br), 243 (81Br). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84% | 63c (1.00 g, 1 eq) is dissolved in DMF (2.8 mL) and trimethyl orthoacetate (2.87 mL, 3.5 eq). Reaction mixture is stirred at 100 C. for 1 h, then acetic acid (570 muL, 2 eq) is added and heating is pursued for 16 h. After cooling, the reaction mixture is diluted with EtOAc and the resulting solution is washed with a 1:1 brine:sat aq sodium bicarbonate. The aqueous layer is re-extracted with EtOAc (3×), and the combined organic extracts are evaporated under reduced pressure to obtain 63d, used without further purification in the following step (944 mg, 84%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
at 140℃; for 38.5h; | A solution of 5-bromo-N*2*-methyl-pyridine-2 3-diamine (Stage 67.1.4, 960 mg, 4 75 mmol) in triethylorthoacetate (Aldrich, Buchs, Switzerland, 25 ml) was stirred for 38 5 h at 140C. The reaction mixture was evaporated to dryness. The residue was dissolved in EtOAc and washed with saturated aqueous NaHCO3. The aqueous layer was extracted with EtOAc and the combined organic layers washed with brine, dried over Na2SO4, filtered and evaprated. The crude product was dry loaded on silica gel and purified by MPLC (DCM/MeOH 0% - 4%) to give the title compound as a brown solid (HPLC. tR 1 95 mm (Method A); M+H = 226, 228 MS-ES). | |
With acetic acid; at 80℃; for 2h; | To a suspension of <strong>[89415-54-3]5-bromo-N2-methylpyridine-2,3-diamine</strong> (510 mg, 2.51 mmol) in AcOH (20 mL) was added MeC(OEt)3 (1 mL) and the solution was warmed to 80 C. for 2 hours. The reaction mixture was allowed to cool to room temperature and was concentrated in vacuo. The crude residue was purified by silica gel column chromatography (0-25% THF/CH2Cl2 gradient) to afford the desired product. 1H NMR (400 MHz, CDCl3) delta 8.36 (d, J=1.8 Hz, 1H), 8.06 (d, J=1.9 Hz, 1H), 3.80 (s, 3H), 2.65 (s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
91% | With sulfuric acid; sodium nitrite; at 20℃; for 1h; | 6-Bromo-3-methyl-3H-[1,2,3]triazolo[4,5-b]pyridineTo a solution of <strong>[89415-54-3]5-bromo-N2-methylpyridine-2,3-diamine</strong> (720 mg, 3.56 mmol) inH2S04(1.90 muIota_, 35.6 mmol) at RT, NaN02(246 mg, 3.56 mmol) was added. The reaction mixture was stirred for 1 h after which time water was added to quench the reaction. EtOAc was added, and the layers were separated. The aqueous layer was extracted once with EtOAc, and the combined organic layers were washed once with brine. The organic layer was concentrated to give 694 mg (91 %) of the title compound. LC-MS m/z 212.8, 214.8 (M+H)+, 0.66 (ret. time). |
To a solution of 5-brom?-N*2*-methyl-pyridine-2,3-diamine (Stage 67.1.4, 1 2 g, 5.94 mmol) in 2 M aqueous HCI (70 ml) cooled with an ice-bath was added a solution of sodium nitrite (Fluka, Buchs, Switzerland, 492 mg, 7 13 mmol) in water (10 ml) The reaction mixture was stirred at 0C for 1 h and at rt for 75 mm then basifed with 2 M aqueous NaOH (75 ml) and extracted with EtOAc The organic layer was washed with brine, dried over NaaSO,., filtered and evaprated The crude product was dry loaded on silica gel and purified by MPLC (heptane/EtOAc 0% - 30%) to give the title compound as a blue solid (HPLC tR 2 46 min (Method A), M+H = 213, 215 MS-ES), |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With acetic acid; at 100℃; for 1.5h; | A solution of 5-bromo-N*2*-methylpyridine-2,3-diamine (Stage 67.1.4, 960 mg, 4 75 mmo.) and tetramethyl orthocarbonate (Aki?ch, Buchs, Switzerland, 2 ml, 14 7 mmol) and acetic acid (0 273 ml, 4 75 mmol) was stirred for 90 min at 100 C The reaction mixture was diluted with EtOAc and washed with saturated aqueous NaHCO3 and brine The aqueous layer was extracted with EtOAc and the combined organic layers washed with saturated aqueous NaHCO3 and with brine, then dried over Na2SO4, filtered and evaprated The crude product was dry loaded on silica gel and purifted by MPLC (DCM/MeOH 0% - 4%) to g>;ve the title compound as a green solid. (HPLC tR 2.83 mm (Method A), M+H - 242, 244 MS-ES). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In 1-methyl-pyrrolidin-2-one; at 20℃; for 17h; | A solution of 5-bromo-N*2*-methyl-pyridine-2,3-diamine (Stage 67,1.4, 2 09 g 10 34 mrnol) and dichloromethylene-dimethyliminium chloride (Aldrich, Buchs, Switzerland 5 04 g, 31 0 mmol) in NMP (60 ml) was stirred for 17 h at rt The reaction mixture was quenched with saturated aqueous NaHCO3 and EtOAc The aqueous layer was extracted with EtOAc and the combined organic layers washed with saturated aqueous NaHCO3 and with brine, then dned over Na2SO4, filtered and evaporated The crude product was dry loaded on silica gel and pu?fied by MPLC (DCM/MeOH 0% ? 5%) to give the title compound as a red solid (HPLC t« 2 13 mm (Method A). M+H - 255, 257 MS-ES) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
for 3h;Reflux; | [00135] 5-Bromo-N*2*-methyl-pyridine-2,3-diamine (0.85 g, 4.55 mmol) is dissolved in trimethylorthoformate (12 mL) and the solution is heated to reflux for 3h, then cooled and evaporated to dryness. The solid residue is purified by flash column chromatography to give the title compound as a yellow oil. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With pyridine; dmap; for 1h;Inert atmosphere; | A mixture of the 5-bromo-/V-methyl-3-nitro-2-pyridinamine (1.14 g, 4.21 mmol assumed). and ammonium chloride (1.103 g, 20.62 mmol) in EtOH^O (8.5 mL of a 1 :1 solution) was stirred as iron (1 .152 g, 20.62 mmol) was added. The mixture was heated to reflux for ~ 2 hours. The mixture was allowed to cool to room temperature then diluted with EtOH and filtered through Celite. The filtrate was concentrated to yield a black tar which was diluted with EtOH then concentrated three times. The residue was slurried in EtOH then filtered. The filtrate was concentrated to yield a black solid which was dissolved in pyridine (15.1 mL). N, N dimethylaminopyridine (0.060 g, 0.49 mmoL) was added followed bybenzenesulfonylchlonde (0.63 mL, 4.91 mmol). The resulting mixture was stirred for one hour under a nitrogen atmosphere. The mixture was then concentrated. The residue diluted with EtOAc, washed with water two times, then saturated NaHC03 followed by brine, dried(Na2S0 ) and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes). Fractions containing the product were combined and concentrated to yield A/-[5-bromo-2-(methylamino)-3-pyridinyl]benzenesulfonamide (0.859 g, 2.51 mmol 60% over 3 steps) as a grey solid. 1H NMR (400 MHz, DMSO-d6) delta ppm 9.58 (br. s., 1 H) 7.94 (br. s., 1 H) 7.75 - 7.64 (m, 3 H) 7.62 - 7.55 (m, 2 H) 6.92 (d, J=2.3 Hz, 1 H) 6.25 (br. s., 1 H) 2.68 (d, J=4.5 Hz, 3 H) LCMS: m/z 344 (M+1 ). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Production Example 42A mixture of 5-bromo-N2-methylpyridin-2 , 3-diamine (0.70 g) , 2-ethylsulfanylbenzoic acid (0.66 g) , SC (0.80 g) , HOBt (23 mg) , and pyridine (20 ml) was stirred under reflux at 120 C for 30 minutes. After the reaction mixture was allowed to stand overnight, the mixture was stirred under reflux at 120 C for 9.5 hours again. Into the reaction mixture cooled to room temperature, water was poured under ice-cooling, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. A mixture of the resulting residue and acetic anhydride (7 ml) was stirred under reflux at 140 C for 1 hour. Aqueous sodium hydroxide solution was added to the reaction mixture cooled to room temperature to neutralize, and extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. The resulting residue was subjected to silica gel column chromatography to give 0.60 g of 6-bromo-2- (2- ethylsulfanylphenyl ) -3-methyl-3H-imidazo [ 4 , 5-b] pyridine (hereinafter referred to as Present Compound 42) .Present Compound 421H-NMR (CDC13) delta : 8.47 (lH,d), 8.22 (lH,d), 7.54-7 (2H,m), 7.45-7.42 (lH,m), 7.37-7.32 (lH,m), 3.71 (3H, 2.86 (2H, q ) , 1.23 (3H,t) |
Tags: 89415-54-3 synthesis path| 89415-54-3 SDS| 89415-54-3 COA| 89415-54-3 purity| 89415-54-3 application| 89415-54-3 NMR| 89415-54-3 COA| 89415-54-3 structure
A470814 [199522-66-2]
N1-(5-Bromopyrid-2-yl)ethane-1,2-diamine
Similarity: 0.86
A198065 [37805-78-0]
6-Bromo-3-methyl-3H-imidazo[4,5-b]pyridine
Similarity: 0.85
A143588 [84539-30-0]
5-Bromo-N-methylpyridin-2-amine
Similarity: 0.84
A470814 [199522-66-2]
N1-(5-Bromopyrid-2-yl)ethane-1,2-diamine
Similarity: 0.86
A143588 [84539-30-0]
5-Bromo-N-methylpyridin-2-amine
Similarity: 0.84
A470814 [199522-66-2]
N1-(5-Bromopyrid-2-yl)ethane-1,2-diamine
Similarity: 0.86
A143588 [84539-30-0]
5-Bromo-N-methylpyridin-2-amine
Similarity: 0.84
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL