Home Cart Sign in  
Chemical Structure| 808770-39-0 Chemical Structure| 808770-39-0
Chemical Structure| 808770-39-0
Product Citations

Alternative Products

Product Details of [ 808770-39-0 ]

CAS No. :808770-39-0
Formula : C5H6ClN3O
M.W : 159.57
SMILES Code : NC1=NN=C(Cl)C=C1OC
MDL No. :MFCD20702054
InChI Key :KCKFEBMJVVTSKC-UHFFFAOYSA-N
Pubchem ID :58694558

Safety of [ 808770-39-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P280-P301+P312-P302+P352-P305+P351+P338

Calculated chemistry of [ 808770-39-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.2
Num. rotatable bonds 1
Num. H-bond acceptors 3.0
Num. H-bond donors 1.0
Molar Refractivity 37.94
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

61.03 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.48
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.43
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.73
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.16
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.86
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.73

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.48
Solubility 5.31 mg/ml ; 0.0332 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.28
Solubility 8.39 mg/ml ; 0.0526 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.02
Solubility 1.51 mg/ml ; 0.00944 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.97 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.31

Application In Synthesis of [ 808770-39-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 808770-39-0 ]

[ 808770-39-0 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 808770-39-0 ]
  • [ 163295-70-3 ]
  • N-(6-chloro-4-methoxypyridazin-3-yl)-1-(3,5-dichlorophenyl)methanesulfonamide [ No CAS ]
YieldReaction ConditionsOperation in experiment
With pyridine; for 1h; To a solution of 6-chloro-4-methoxypyridazin-3-amine, prepared using a literature procedure (WO2004108690A1) (403 mg, 1.97 mmol), in pyridine (3 mL) was added <strong>[163295-70-3](3,5-dichlorophenyl)methanesulfonyl chloride</strong> (51 1 mg, 1.97 mmol) and the mixture was stirred for 1 hr. The solvent was evaporated and the residue dissolved in DCM (100 mL), then treated with 1M BBr3 in DCM (3.9 mL, 3.9 mmol) and the solution stirred 3 hrs. A further 2 mL of the BBr3 solution was added with further stirring for 3 hrs. The reaction was quenched with excess saturated NaHC03 and more DCM was added (15 mL) A significant amount of solid precipitated, so the mixture was filtered and the filtrate reserved. The solid was treated with 3M HC1 until effervescence stopped and was carefully added back to the DCM/ NaHC03 mixture, ensuring the pH did not fall to below 7. The phases were separated and the aqueous phase re-extracted with EtOAc (3x 40 mL). The combined organic phases were dried (Na2SC>4), the mixture was filtered and the filtrate evaporated to dryness to afford brown oil which was purified by reverse-phase HPLC (low pH method). After removal of solvent the residue was slurried with hot EtO Ac/Heptane (1 : 1 , 5 mL) and filtered to afford N-(6-chloro-4-hydroxypyridazin-3-yl)- l-(3,5-dichlorophenyl)methanesulfonamide as a tan solid (90 mg, 12%).
  • 2
  • [ 808770-39-0 ]
  • [ 163295-70-3 ]
  • 1-(3,5-dichlorophenyl)-N-[4-methoxy-6-(propylsulfanyl)pyridazin-3-yl]methanesulfonamide [ No CAS ]
 

Historical Records

Technical Information

Categories