Structure of 65039-08-9
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 65039-08-9 |
Formula : | C6H11BrN2 |
M.W : | 191.07 |
SMILES Code : | CN1C=C[N+](CC)=C1.[Br-] |
MDL No. : | MFCD03427610 |
InChI Key : | GWQYPLXGJIXMMV-UHFFFAOYSA-M |
Pubchem ID : | 2734235 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 5 |
Fraction Csp3 | 0.5 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 43.02 |
TPSA ? Topological Polar Surface Area: Calculated from |
8.81 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
-2.76 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.41 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
-2.66 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.84 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.26 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
-0.58 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.26 |
Solubility | 1.05 mg/ml ; 0.00552 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.2 |
Solubility | 12.1 mg/ml ; 0.0632 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-0.71 |
Solubility | 37.6 mg/ml ; 0.197 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.46 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.43 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
87.1% | In water; at 60℃; for 2h; | 2. Put 200g lithium bistrifluoromethylsulfonimide, 152g 1-ethyl-3-methylimidazole bromide salt and 400g pure water into the reactor,Warm to 60 , react for 2h,After standing for a while, 283 g of crude 1-ethyl-3-methylimidazole bistrifluoromethylsulfonimide salt was obtained. 3. Wash three times with pure water to obtain 251g of pure 1-ethyl-3-methylimidazole bistrifluoromethylsulfonimide salt.Distill it on a rotary evaporator under reduced pressure for 2h,Keep the temperature at 80 , remove most of the water,Finally, it is dried in a vacuum oven at 110 C for 12h.237 g of 1-ethyl-3-methylimidazole bistrifluoromethylsulfonimide was obtained. The purity of the product detected by liquid chromatography was 99.23%, and the yield was 87.1%;Ion chromatography detection: halogen ion 450ppm;ICP detection: Fe ion <1ppm, Pb ion <1ppm. |
86% | In water; at 20℃; for 2h;Heating / reflux; | 9.40 g of methylimidazole (0.115 mol) in 50 ml of ethyl acetate is introduced into a 500 ml three-necked flask equipped with a condenser. 14.25 g of ethyl bromide (0.126 mol) is added dropwise at ambient temperature. Then, the mixture is left for two hours under reflux before being extracted by three times 25 ml of ethyl acetate. The product is dried under vacuum at 70 C. for thirty minutes; this is ethylmethylimidazolium bromide. NMR 1H: (200 MHz, CD3CN): delta 9.42 (t, 1H, Ha); 7.63 (d, 1H, Hb); 7.55 (d, 1H, Hc); 3.93 (s, 3H, Hd); 4.28 (q, 2H, He); 1.50 (t, 3H, Hf) This product is added dropwise at ambient temperature to a mixture containing 50 ml of water and 31.37 g of lithium bis(trifluorosulphonyl)imide (0.109 mol). Then the mixture is stirred for two hours under reflux. The product is then extracted with three times 20 ml of dichloromethane before being evaporated under vacuum at 70 C. for 30 minutes. The overall yield is 86%. NMR 1H: (200 MHz, CD3CN): delta 8.46 (s, 1H, Ha); 7.42 (s, 1H, Hb); 7.37 (s, 1H, Hc); 3.93 (s, 3H, Hd); 4.28 (q, 2H, He); 1.50 (t, 3H, Hf) |
In water; at 70℃; for 24h;pH 6.0; | General procedure: The respective halide IL was dissolved in deionized water (pH =6) and after an equimolar amount of LiNTf2 in water had been added dropwise, the reaction mixture was stirred for 1 day at 70 C. Then CH2Cl2 was added and the aqueous phase was removed. The organic phase was washed halide-free with deionized water (AgNO3 test). The solution was filtered over a column filled with neutral Al2O3 and activated charcoal. The organic solvent was removed under reduced pressure and the reaction product finally dried under dynamic vacuum for 1-2 days at 80-90 C. |
383.5 g | In water; | Step 1: Take 287.1g of lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) completely dissolved in water to form an aqueous solution with a mass percentage concentration of 50%; Step 2: 191.1 g of 1-ethyl-3-methylimidazolium bromide (EMIBr) was completely dissolved in water to form an aqueous solution having a mass percentage concentration of 50% Step 3: mixing the aqueous solution products obtained in steps 1 and 2 to obtain a crude product; Step 4: The crude product is obtained in step 3, washed with water for 2 times, emulsified by heating and stirring, and heated to 60 DEG C for demulsification, and then high purity product is obtained after liquid separation; Step 5: The high-purity product obtained in Step 4 was vacuum-dried at 100 C for 8 hours to obtain 383.5 g of colorless liquid EMI · TFSI product (melting point: about -15 C), purity: 99.95%, water content: 80 ppm, . |