There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 638-02-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 638-02-8 |
Formula : | C6H8S |
M.W : | 112.19 |
SMILES Code : | CC1=CC=C(C)S1 |
MDL No. : | MFCD00005452 |
InChI Key : | GWQOOADXMVQEFT-UHFFFAOYSA-N |
Pubchem ID : | 12514 |
GHS Pictogram: |
![]() |
Signal Word: | Danger |
Hazard Statements: | H225 |
Precautionary Statements: | P210-P403+P235 |
Class: | 3 |
UN#: | 1993 |
Packing Group: | Ⅲ |
Num. heavy atoms | 7 |
Num. arom. heavy atoms | 5 |
Fraction Csp3 | 0.33 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 34.25 |
TPSA ? Topological Polar Surface Area: Calculated from |
28.24 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.06 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.4 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.36 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.91 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.46 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.44 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.58 |
Solubility | 0.298 mg/ml ; 0.00265 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.63 |
Solubility | 0.26 mg/ml ; 0.00232 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.38 |
Solubility | 0.467 mg/ml ; 0.00416 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.28 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.62 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With titanium tetrachloride; In dichloromethane; at 0 - 20℃; for 2.5h; | A solution of 2,5-dimethylthiophene (7.80 g, 69.5 mmol) in DCM (15 mL) and a solution of dichloromethoxymethane (10.40 g, 90.5 mmol) in DCM (15 mL) were added simultaneously to a solution of TiCl4 (19.1 mL, 174 mmol) in DCM (20 mL) keeping the temperature of the solution below 5 C. The mixture was stirred at 0 C for 2 h, warmed to r.t. over 30 min then poured onto ice acidified with cone. HC1 (20 mL). The mixture was partitioned between DCM and water, and the organic layer was washed with water, dried and evaporated. Kugelrohr distillation (membrane pump, kugelrohr set to approximately 175 C) gave 12 as a colourless liquid (5.81 g, 60%). 1H MR (CDC13) δ 9.93 (s, 1H), 7.00 (d, J = 1.1 Hz, 1H), 2.70 (s, 3H), 2.40 (d, J = 0.4 Hz, 3H). Found: [M+H]=141.1 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dihydrogen peroxide; trichlorophosphate; In N-methyl-acetamide; water; acetonitrile; | Reference Example 143 2,5-Dimethyl-3-thiophenecarboxylic Acid Phosphorus oxychloride (10 ml) was slowly added dropwise to dimethylformamide (30 g) under ice-cooling, and 2,5-dimethylthiophene (11.2 g) was added. The mixture was stirred at 100 C. for 15 hours, poured into water and extracted with ethyl acetate. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give 2,5-dimethyl-3-thiophenecarbaldehyde (1.41 g). 2,5-Dimethyl-3-thiophenecarbaldehyde (3.89 g) synthesised in this manner was dissolved in acetonitrile (30 ml), and sodium dihydrogen phosphate (1.2 g) in water (15 ml) and 30% aqueous hydrogen peroxide (3.5 ml) were added dropwise. The mixture was stirred at room temperature for 2 hours, alkalified with 1N aqueous sodium hydroxide and washed with diethyl ether. The aqueous layer was acidified with 1N hydrochloric acid and extracted with ethyl acetate. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give 2,5-dimethyl-3-thiophenecarboxylic acid (4.09 g) as crystals. mp 113-114 C. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To DMF (10OmL) stirred in an ice bath was added POCl3 (25 mL) drop wise followed by the addition of 2,5-dimethyl-thiophene (5 mL). The solution was warmed to room temperature and then was heated at 80 C overnight. The reaction was cooled to room temperature and was slowly added to ice. Sodium acetate was added to bring the pH to between 5 and 6. The aqueous portion was extracted with ethyl acetate, and the organic portion was dried over sodium sulfate, concentrated under reduced pressure and purified on a silica gel column (eluent: 10:1 :: hexanes: EtOAc -> 4:1 :: hexanes: EtOAc to yield 2,5-dimethyl-thiophene-3- carboxaldehyde (1.5 g). |