Structure of 622-40-2
*Storage: Keep in dark place, inert atmosphere, 2-8°C.
*Shipping: Normal
4.5
*For Research Use Only !
Change View
Size | Price | US Stock | Global Stock | In Stock |
25g | łÇʶÊÊ | In Stock | In Stock | Login |
100g | łÇ˶ÊÊ | In Stock | In Stock | Login |
500g | ł§Í¶ÊÊ | In Stock | In Stock | Login |
1kg | łÍò¶ÊÊ | Inquiry | In Stock | Login |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
łÇʶÊÊ
łÇ˶ÊÊ
ł§Í¶ÊÊ
łÍò¶ÊÊ
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 622-40-2 |
Formula : | C6H13NO2 |
M.W : | 131.17 |
SMILES Code : | OCCN1CCOCC1 |
MDL No. : | MFCD00006180 |
InChI Key : | KKFDCBRMNNSAAW-UHFFFAOYSA-N |
Pubchem ID : | 61163 |
GHS Pictogram: | ![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 37.9 |
TPSA ? Topological Polar Surface Area: Calculated from | 32.7 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from | 1.66 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by | -0.79 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from | -1.07 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from | -0.67 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by | 0.51 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions | -0.07 |
Log S (ESOL):? ESOL: Topological method implemented from | -0.02 |
Solubility | 124.0 mg/ml ; 0.947 mol/l |
Class? Solubility class: Log S scale | Very soluble |
Log S (Ali)? Ali: Topological method implemented from | 0.58 |
Solubility | 501.0 mg/ml ; 3.82 mol/l |
Class? Solubility class: Log S scale | Highly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by | -0.26 |
Solubility | 71.4 mg/ml ; 0.545 mol/l |
Class? Solubility class: Log S scale | Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg | Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg | No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) | No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) | No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) | No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) | No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) | No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) | No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from | -7.66 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from | 0.0 |
Ghose? Ghose filter: implemented from | None |
Veber? Veber (GSK) filter: implemented from | 0.0 |
Egan? Egan (Pharmacia) filter: implemented from | 0.0 |
Muegge? Muegge (Bayer) filter: implemented from | 1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat | 0.55 |
PAINS? Pan Assay Interference Structures: implemented from | 0.0 alert |
Brenk? Structural Alert: implemented from | 0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from | No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) | 1.46 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium hexamethylsilazane; In tetrahydrofuran; toluene; at 0 - 20℃; | A solution of 4-fluoronitrobenzene (0.141 g, 0.106 ML, 0. 001MOL), aminoalcohol (1.1 equiv) in tetrahydrofuran (8-10 mL) was cooled to 0 C in a sealed tube. A solution of KHMDS (0.5 M in toluene) was added dropwise, and the reaction mixture was allowed to reach room temperature. The mixture was partitioned between sat. aq. K2CO3 and ethylacetate. The organic layer was separated, dried over anhydrous NA2S04, and concentrated. The residue was purified via column chromatography on silica gel (gradient elution with 0 to 10% methanol-dichloromethane) to afford the alkoxynitrobenzene | |
a. 4~[2-(4-nitro-phenoxy)-θthyl]-morpholine; Sodium hydride (60 %, 8.4 g) was suspended in THF (400 mL) and then treated with 4-(2-hydroxyethyl)morpholine (25 g, 0.191 mole) in portions (caution: foaming and gas evolution.). After the addition the mixture was stirred for 1 hour at room temperature, and then cooled to 0 0C. 1-fluoro-4-nitro-benzene (26.95 g, 0.191 mole) was dissolved in THF (50 mL) and added dropwise to the stirring alkoxide. The reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent volume was reduced by two thirds and diluted with water (1.5 L). This solution was extracted with DCM, dried (Na2SO4), filtered and concentrated to an oil. The oil was triturated with hexanes to give an orange-yellow solid which was filtered and washed with more hexanes (29 g). | ||
With triethylamine; In acetonitrile; for 3h;Reflux; | General procedure: To a stirred solution of 1-fluoro-4-nitrobenzene 7 (2.0 g, 14.2 mmol) in 20 mL acetonitrilewas added morpholine (1.9 g, 21.3 mmol) followed by triethylamine(4.3 g, 5.9 mL, 42.5 mmol). The mixture was stirred at reflux for 3 h.After the reaction was cooled to room temperature, it was pouredinto 80 mL water and extracted with ethyl acetate (2 x 80 mL). Thecombined organic layers were washed with brine (60 mL), driedover sodium sulfate, concentrated in vacuo, then dried under vacuumto obtain 2.7 g of 8a as yellow solid; yield: 92%; 8a was usedwithout further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium hydride; In DMF (N,N-dimethyl-formamide); at 0 - 20℃; for 3.5h; | [STEP A : TO THE SOLUTION OF 8.0 G (51 MMOL) OF 1-CHLORO-4-NITROBENZENE AND 6.7 G (6.3 ML; 51] mMol) of N-hydroxyethyl-morpholine in 50 mL of DMF at [0C] is added 2.7 g of NaH portionwise over 2.5 h. After stirring another hour at rt, the reaction mixture is poured onto 200 mL of water and stirred. The precipitated crystals are filtered and dried at [60C] under vacuum to obtain [4- [2- (4-NITRO-PHENOXY)-ETHYL]-MORPHOLINE. TITLE] compound: ES-MS: 253 [M+H] + ; single peak at tR= 4.8 min (System 2). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
76% | With di-tert-butyl-diazodicarboxylate; triphenylphosphine; In dichloromethane; at 20℃; for 2h; | a) Di-tert-butyl azodicarboxylate (1.44g, 6. 26mmol) was added portionwise at room temperature to a stirred suspension of <strong>[574745-97-4]4-chloro-7-methoxyquinazolin-6-ol</strong> (1.20 g, 5.70 mmol), 2-morpholin-4-ylethanol (0.82 g, 6.2 6mmol) and triphenylphosphine (1.8 g, 6.87 mmol) in dichloromethane (25 ml). The reaction mixture was stirred for 2 hour and then the resulting orange solution was purified directly by silica gel chromatography eluting with a mixture of 3% methanol in dichloromethane and then purified further by chromatography on neutral alumina eluting with a 3% mixture of methanol in dichloromethane to give 4-chloro-7- METHOXY-6- (2-MORPHOLIN-4-YLETHOXY) quinazoline (1.40 g, 76% yield) as a pale yellow solid: 1H-NMR (CDC13) : 8.86 (s, 1H), 7.42 (s, 1H), 7.33 (s, 1H), 4.34 (t, 2H), 4.04 (s, 3H), 3.75 (m, 4H), 2.94 (t, 2H), 2.64 (m, 4H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium; | EXAMPLE 7 The apparatus and procedure of Example 1 were used, employing 2-morpholinoethan-1-ol (20.7 g.), sodium (0.07 g.), <strong>[1721-26-2]ethyl 2-methylnicotinate</strong> (27.18 g.), and a temperature of 160°-170° C. for 6 hours. There was thus obtained 2-morpholino<strong>[1721-26-2]ethyl 2-methylnicotinate</strong>, b.p. 130° C./0.08 mm.; maleate, m.p. 150° C. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 20℃; for 2h; | Example 1.9: Preparation of Intermediate 4-[2-(3-Iodo-5-nitro-pyridin-2-yloxy)-ethyl]- morpholine.To a suspension of <strong>[25391-58-6]3-iodo-5-nitro-pyridin-2-ol</strong> (1.95 g, 7.32 mmol) in THF (60 mL), triphenyl phosphine (4.09 g, 15.6 mmol) and 4-(2-hydroxyethyl)motaupholine (1.90 mL, 15.6 mmol) were added followed by dropwise addition of diisopropyl azodicarboxylate (DIAD) (3.00 mL, 15.5 mmol). After 1 hour, an LC/MS showed only partial conversion so extra triphenyl phosphine (2.73'g, 10.4 mmol) and 4-(2-hydroxyethyl)morpholine (1.30 mL, 10.7 mmol) were added followed by dropwise addition of diisopropyl azodicarboxylate (DIAD) (2.00 mL, 10.3 mmol). The reaction mixture was stirred at room temperature for 1 more hour and then concentrated. The resulting gummy residue was dissolved in water (500 mL), acidified with HCl to pH 1 , washed with ethyl acetate (three 300 mL portions, which were discarded), basified to pH 10 with NaOH, and extracted three times with 300 mL portions of ethyl acetate. The combined organic phase was dried over MgSO4, filtered and concentrated, yielding an oil which was purified by HPLC to afford 4-[2-(3-iodo-5-nitro-pyridin-2-yloxy)-ethyl] -morpholine as an impure brown oil (1.06 g). LCMS m/z (%) = 380 (M+H, 100). 1H NMR (400 MHz, DMSO-de) delta: 9.04 (d, J= 2.63 Hz, IH), 8.87 (d, J= 2.60 Hz, IH), 4.55 (t, J= 5.61 Hz, 2H), 3.58-3.50 (m, 4H), 2.75 (t, /= 5.59 Hz, 2H), 2.43-2.30 (m, 4H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Alternatively, instead of the hydrazone linkage describe above, the compounds may have an amide linkage (see Scheme I below). The synthesis consists of 3 steps. First, to a stirred solution of 4-(2-hydroxyethyl)morpholine (B) (2.8 g, 21.3 mmol) in anhydrous THF (45 mL) at 0 0C, sodium hydride, 60percent dispersion in mineral oil, (0.9 g, 22.5 mmol) is added in three portions under nitrogen purge. Ice-bath was removed and a mixture is stirred at room temperature for 20-30 minutes. The mixture is cooled to 0 0C and added drop-wise (using syringe or dropping funnel) under nitrogen purge to a solution of methyl 2,4-dichloropyrirnidine carboxylate (A) (4.03 g, 19.4 mmol) in anhydrous THF (35 mL) at 0 0C. The resultant solution is stirred for 30 minutes at 0 0C, followed by 30 minutes at room temperature. It is then quenched carefully with ice-water (115mL) and diluted with ethyl acetate (115 mL). Organic layer is separated, water layer extracted once with ethyl acetate, combined ethyl acetate extracts are washed with brine and dried over anhydrous sodium sulfate. Concentration, followed by column chromatography with gradient eluation (hexane : ethyl acetate, 1:1; hexane : ethyl acetate,l:2; ethyl acetate; dichloromethane-acetone-methanol, 3:1:01) affords 3 fractions: first (0.56 g, 9.5percent ) - mostly isomer C, second (1.28 g, 21.8percent)- a mixture of C and D, and byproduct (E), third (0.7 g, 11.9percent) - mostly isomer (D). EPO <DP n="99"/>In the second step, a solution of compound C (0.6 g, 2 mmol), 5-amino-2,3- dimethylindole (F) (0.32 g, 2 mmol) and DIPEA (0.28 g, 2.2 mmol)in dioxane is heated at reflux for two hours. Ethyl acetate and water are added to the concentrated reaction mixture, water layer extracted with ethyl acetate, combined ethyl acetate extracts washed with brine and dried over anhydrous sodium sulfate. Product G (0.64 g, 75percent) is isolated by column chromatography with gradient eluation (ethyl acetate; dichloromethane- acetone-methanol, 3:1:01).In the same manner compound D is converted into product H.Compounds H is then converted into their corresponding amides (I) using appropriate amines following general procedure for amide formation.To a stirred mixture of ester (1 mmol) and amine (1.05 mmol) in toluene (3.2 mL)., 2 M solution of trimethylaluminum in toluene (1.6 eq) is added drop-wise under nitrogen purge. The reaction mixture is stirred until gas evolution halted, and then mixture is micro waved at 120 0C for 5-7 minutes (Emrys Optimizer). To the reaction mixture were added IN NaOH solution and dichloromethane, organic layer separated, washed with water, brine and dried over anhydrous sodium sulfate. Flash column chromatography purification affords about 65-75percent of a desired amide (I). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogen;Cu/Al2O3/SiO2; In methanol; at 170℃; under 41254.1 Torr; for 16.5h;Autoclave; | HydrogenationThe hydrogenation experiments were performed in a multi-autoclave unit containing four 60 ml batch autoclaves, all equipped with common electrical heating and with individual gas entrainment impellers, manometers and temperature indication . The hydrogenation catalysts were activated in-situ (typical conditions : 230 0C, 10 - 20 bar H2 for 4 hrs ) . The substrates, dissolved in ca . 20 ml solvent , were introduced into the autoclaves by injection. Then, the autoclaves were pressurized with Hz, stirred at 800 rpm and heated to ca. 170 0C. After the reaction, the liquid reactor contents were analyzed by GC-MS. Table 2 shows the reaction conditions and analytical results from the different experiments. Table 23 This specie was qualitatively observed by NMR analysis and/or GC-MS.4 GC-MS peak area percentage (Anpercent) = (peak area n) x 100 / (sum of substrate, 2-hydroxyacetamide, MEG, HOCH2CH2NR2, R2NCH2CH2NR2 and all polyamine peak areas) .5 MEG peak corrected for overlaying methyl glycolate peak (10percent peak area reduction) . n.d. = not determined |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
1% | In a 24-well Bohdan block, ethyl 5-hydroxy-1 H-indole-2-carboxylate (0.100 g, 0.487 mmol), 2-(4-morpholinyl)ethanol (0.160 g, 1.22 mmol) and PS-triphenylphosphine (406 mg, 1.22 mmol) were dissolved in THF (1 ml_). Di-terf-butyl azodicarboxylate (1.22 M in THF, 1 ml.) was added and the block shaken overnight. The reactor block was drained into a second Bohdan block and rinsed with THF. 1 N LiOH (1 mL) was added and the reactor block shaken for 6 hours at RT. 1 N HCI (1 mL) was added and the block was drained into a 24-well plate, rinsed with THF and the solvent evaporated. The residue was dissolved in DMF and filtered to remove salts. To the DMF solution was added 3-[3-(aminomethyl)-6-chloro-2-fluorophenyl]oxy}-5- chlorobenzonitrile (50 mg, 0.161 mmol) followed by HATU (61.1 mg, 0.161 mmol) and DIPEA (30 muL, 0.222 mmol) and the reaction mixture stirred overnight. The resulting solution was diluted to 2 mL with MeOH. Purification was accomplished by Reverse-Phase HPLC (water/acetonitrile with 0.1 % TFA) to afford the title compound (0.003 g, 1%) as a glass. 1H NMR (400 MHz, CDCI3;/ delta ppm 9.05 - 9.11 (m, 1 H), 7.35 - 7.37 (m, 1 H), 7.34 (s, 1 H), 7.27 - 7.31 (m, 2 H), 7.15 - 7.18 (m, 1 H), 7.05 (d, 1 H), 7.02 (dd, 1 H), 6.99 (dd, 1 H), 6.79 (d, 1 H), 6.50 - 6.57 (m, 1 H), 4.73 (d, 2 H), 4.13 - 4.18 (m, 2 H), 3.72 - 3.79 (m, 4 H), 2.82 - 2.90 (m, 2 H), 2.60 - 2.69 (m, 4 H). LCMS m/z 583.1 (M+1 ). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
3.16 mg | Sodium hydride (60Wt% in oil, 2.141 g, 53.5 mmol) was added portionwise to a stirred solution of 2-morpholinoethanol (6.48 ml, 53.5 mmol) stirring in dioxane (70 ml_) at 0C - 5C under N2. This was left to stir for 30 min before <strong>[1597-32-6]6-fluoropyridin-2-amine</strong> (2 g, 17.84 mmol) was added in dioxane (10 ml_) over 10 min. After addition, reaction was heated to 90C overnight ( 18 h). The reaction was quenched by the slow addition of I PA ( 20 ml_) followed by water (50 ml_). Dioxane was then removed in vacuo and the residue partitioned between EtOAc and water (100 ml_ each). The organic phase was washed with saturated brine (2 x 30 ml_) and then dried over Na2S04, filtered and concentrated in vacuo to afford a light yellow solid. The crude product was purified by chromatography on the Companion (80 g column), using DCM:MeOH:NH3; 0 - 5%, to afford the sub-title compound (3.16 g) as a pale yellow solid. 1 H NMR (DMSO-d6) 400MHz, δ: 7.34 (t, 1 H), 6.09 (m, 2H), 4.32 (t, 2H), 4.32 (br s, 2H), 3.73 (t, 4H), 2.76 (t, 2H), 2.57 (t, 4H) LCMS m/z 224 (M+H)+ (ES+) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; dicyclohexyl-carbodiimide; In tetrahydrofuran; at 30℃; for 17.0h;Cooling with ice; | General procedure: Compound (2) (8.0 g, 30 mmol) and DMAP (0.2 g, 1.6 mmol)were dissolved in a solution of THF (50 mL). Then DCC (11.63 g,56 mmol) in THF (20 ml) was added dropwise into above mixtureunder ice-bath. The ice-bath was removed after dropping, 2-(dimethylamino)ethanol (13.3 g, 149 mmol) in THF (30 mL) wasadded dropwise into the above mixture. The mixturewas stirred onoil bath at 30 C for seventeen hours. After completion of reaction,the reaction mixture was filtered off and the solvent was evaporated.The mixture was taken in AcOEt (50 mL 3). The organiclayer was combined and washed with water and brine, and driedover Na2SO4. Filtration and concentration in vacuo gave (3a) (6.10 g,60%) as a yellow viscous gel. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
63%; 31% | With cyanomethylenetributyl-phosphorane; In toluene; at 90℃; for 18h;Sealed tube; | General procedure: The reaction was performed in 2 batches. In a sealed tube, cyanomethylenetributyl phosphorane (9.28 mL, 35.40 mmol) was added to a solution of 3-methyl-5-nitro-lH- pyrazole (1.50 g, 1 1.80 mmol) and 3-hydroxymethyl-3-methyloxethane (3.53 mL, 35.40 mmol) in toluene (100 mL). The solution was heated at 60 C for 18 h. The 2 batches were combined and the solvent was evaporated in vacuo. The residue (black oil) was purified by column chromatography on silica gel (irregular SiOH, 15-40 muiotaeta, 330 g, liquid loading on DCM, mobile phase: heptane/EtOAc, gradient from 90: 10 to 50:50). The fractions containing the product were combined and evaporated to dryness to give 3.95 g of intermediate 303 (79% yield, orange oil) directly used as it in the next step. |
Tags: 622-40-2 synthesis path| 622-40-2 SDS| 622-40-2 COA| 622-40-2 purity| 622-40-2 application| 622-40-2 NMR| 622-40-2 COA| 622-40-2 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL