Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 5460-31-1 Chemical Structure| 5460-31-1
Chemical Structure| 5460-31-1

*Storage: Inert atmosphere,Room Temperature.

*Shipping: Normal

2-Methyl-3-nitrophenol

CAS No.: 5460-31-1

4.5 *For Research Use Only !

Cat. No.: A267235 Purity: 98%

Change View

Size Price

USA Stock *0-1 Day

Global Stock *5-7 Days

In Stock
1g łÇÿ¶ÊÊ In Stock In Stock Login
5g łÇó¶ÊÊ Inquiry In Stock Login
10g łË§¶ÊÊ Inquiry Inquiry Login
25g łËó¶ÊÊ Inquiry Inquiry Login

Please Login or Create an Account to: See VIP prices and availability

  • 1g

    łÇÿ¶ÊÊ

  • 5g

    łÇó¶ÊÊ

  • 10g

    łË§¶ÊÊ

  • 25g

    łËó¶ÊÊ

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Details of [ 5460-31-1 ]

CAS No. :5460-31-1
Formula : C7H7NO3
M.W : 153.14
SMILES Code : OC1=CC=CC([N+]([O-])=O)=C1C
MDL No. :MFCD00007241
InChI Key :GAKLFAZBKQGUBO-UHFFFAOYSA-N
Pubchem ID :79579

Safety of [ 5460-31-1 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H301-H315-H319-H412
Precautionary Statements:P501-P273-P270-P264-P280-P302+P352-P337+P313-P305+P351+P338-P362+P364-P332+P313-P301+P312+P330
Class:6.1
UN#:2446
Packing Group:

Calculated chemistry of [ 5460-31-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 11
Num. arom. heavy atoms 6
Fraction Csp3 0.14
Num. rotatable bonds 1
Num. H-bond acceptors 3.0
Num. H-bond donors 1.0
Molar Refractivity 42.25
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

66.05 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.36
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.11
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.61
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.61
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.36
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.07

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.46
Solubility 0.535 mg/ml ; 0.0035 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-3.13
Solubility 0.114 mg/ml ; 0.000745 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.57
Solubility 4.08 mg/ml ; 0.0267 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.74 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.64

Application In Synthesis [ 5460-31-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 5460-31-1 ]

[ 5460-31-1 ] Synthesis Path-Downstream   1~6

  • 3
  • [ 5460-31-1 ]
  • [ 74-88-4 ]
  • [ 4837-88-1 ]
YieldReaction ConditionsOperation in experiment
Intermediate 57To a solution of 2-methyl-3-nitrophenol (15.3 g, 100 mmol) in DMF (150 mL) was added sodium hydride (60% in mineral oil, 2.6 g, 1 10 mmol) at 0C and the mixture was stirred for 30 minutes at room temperature. Methyl iodide (28.4 g, 200 mmol) was added and the mixture was heated to 80 C for 5 hours. Water (100 mL) was added and the mixture was extracted with ethyl acetate (3 times 100 mL). The combined ethyl acetate phases were dried over sodium sulphate and concentrated under vacuum to give a residue, which was purified by column chromatography on silica gel (PE:EtOAc = 5: 1 ). Evaporation afforded the title compound as a yellow solid (14.4 g).
With potassium carbonate; In N,N-dimethyl-formamide; at 20℃; for 14.0h; Methyl iodide (8.13 mL, 130.6 mmol) was added dropwise to a solution of 8 (10 g, 65.29 mmol) ,and potassium carbonate (18.05 g, 130.6 mmol) in anhydrous DMF (130 mL). The reaction mixture was stirred at rt for 14 h and quenched by the addition of H2O (250 mL). The aqueous phase was extracted with EtOAc (3 × 200 mL), the combined organic layers washed with water (100 mL), saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and concentrated to give corresponding methyl ether as a colorless solid. Palladium on carbon (10%, 200 mg) was added to a solution of above product in EtOAc (130 mL). The suspension was stirred at rt for 6 h under a hydrogen atmosphere before it was filtered through a plug of celite and eluted with EtOAc (150 mL). The eluent was concentrated to afford 12 (8.59 g, 96% over two steps) as a colorless amorphous solid.
  • 4
  • tetrafluoroboric acid [ No CAS ]
  • [ 1493-13-6 ]
  • [ 5460-31-1 ]
  • [ 219312-08-0 ]
  • 4-chloro-2-methyl-3-nitrophenol [ No CAS ]
YieldReaction ConditionsOperation in experiment
With N-chloro-succinimide; sulfuric acid; sodium sulfate; sodium nitrite; In water; acetonitrile; 4. Preparation of 4-chloro-2-methyl-3-nitrophenol A slurry of 4-chloro-2-methyl-3-nitroaniline (20.9 g), water (200 mL), and fluroboric acid (86 mL) was heated to boiling until almost complete solution took place, then cooled to 0-5 C. A solution of sodium nitrite (8.11 g) in water (20 mL) was then added dropwise to the above mixture, and then the mixture was stirred in the cold for an additional 30 min. The precipitated diazonium salt was filterd off and washed with a little cold water. The wet diazonium salt was added all at once to a hot (100-120 C.) solution of water (230 mL), concentrated sulfuric acid (115 mL), and sodium sulfate (35 g), and allowed to stir for 4 hr. The reaction mixture was cooled to room temperature and extracted with ethyl ether (700 mL in two portions). The combined ether extracts were washed with saturated sodium chloride solution, then dried over magnesium sulfate. Evaporation afforded crude product (17.5 g), which was purified by flash chromatography on silica, eluding with methylene chloride to afford 7.6 g as a yellow solid. The phenol was also prepared by the NCS chlorination of 2-methyl-3-nitrophenol, in a manner similar to that described in Oberhauser, J. Org. Chem. (1997) 62:4504-4506, as follows. STR72 2-Methyl-3-nitrophenol (25.5 g), N-chlorosuccinimide (44.5 g), and trifluormethanesulfonic acid (50.0 g) were combined in dry acetonitrile (500 mL) and allowed to stir under an atmosphere of nitrogen at 75 C. for 1.5 hr. The reaction mixture was cooled to room temperature, diluted with ethyl ether (650 mL), washed with water, 10% sodium bisulfite solution, water, and finally saturated sodium chloride solution. Evaporation of the solvent afforded a crude material which was flash chromatographed on silica and eluted with acetone:hexane (1:9) to afford 16.8 g as a yellow solid.
With N-chloro-succinimide; sulfuric acid; sodium sulfate; sodium nitrite; In water; acetonitrile; 4. Preparation of 4-chloro-2-methyl-3-nitrophenol A slurry of 4-chloro-2-methyl-3-nitroaniline (20.9 g), water (200 mL), and fluroboric acid (86 mL) was heated to boiling until almost complete solution took place, then cooled to 0-5C. A solution of sodium nitrite (8.11 g) in water (20 mL) was then added dropwise to the above mixture, and then the mixture was stirred in the cold for an additional 30 min. The precipitated diazonium salt was filterd off and washed with a little cold water. The wet diazonium salt was added all at once to a hot (100-120C) solution of water (230 mL), concentrated sulfuric acid (115 mL), and sodium sulfate (35 g), and allowed to stir for 4 hr. The reaction mixture was cooled to room temperature and extracted with ethyl ether (700 mL in two portions). The combined ether extracts were washed with saturated sodium chloride solution, then dried over magnesium sulfate. Evaporation afforded crude product (17.5 g), which was purified by flash chromatography on silica, eluding with methylene chloride to afford 7.6 g as a yellow solid. The phenol was also prepared by the NCS chlorination of 2-methyl-3-nitrophenol, in a manner similar to that described in Oberhauser, J. Org. Chem . (1997) 62 :4504-4506, as follows. 2-Methyl-3-nitrophenol (25.5 g), N-chlorosuccinimide (44.5 g), and trifluormethanesulfonic acid (50.0 g) were combined in dry acetonitrile (500 mL) and allowed to stir under an atmosphere of nitrogen at 75 C for 1.5 hr. The reaction mixture was cooled to room temperature, diluted with ethyl ether (650 mL), washed with water, 10% sodium bisulfite solution, water, and finally saturated sodium chloride solution. Evaporation of the solvent afforded a crude material which was flash chromatographed on silica and eluted with acetone:hexane (1:9) to afford 16.8 g as a yellow solid.
  • 5
  • trans-6-benzyloxy-2-nitro-β-pyrrolindino -styrene [ No CAS ]
  • [ 5460-31-1 ]
  • [ 5585-96-6 ]
YieldReaction ConditionsOperation in experiment
69% With 2-(Dimethylamino)pyridine; acetic anhydride; triethylamine;palladium-carbon; In ethyl acetate; EXAMPLE 2 Synthesis of 4-acetoxyindole A suspension of 3.24 g of trans-6-benzyloxy-2-nitro-beta-pyrrolindino -styrene (prepared from 2-methyl-3-nitrophenol by a procedure reported in Organic Synthesis, Coll. Vol. 7, 34, 1990) and 648 mg of 10% pd/C catalyst in 30 ml of ethyl acetate was shaken under hydrogen atmosphere and at 50 psi, for 5 hours. To this reaction mixture were added acetic anhydride (1.4 ml), triethylamine (2.1 ml) and dimethylaminopyridine (324 mg). The resultant mixture was stirred for 1 hour at room temperature. The catalyst was removed over a layer of Celite and the filtrate was evaporated under reduced pressure to give an oily residue to which crushed ice was added. The resulting white precipitate was collected by filtration to give 1.2 g (69% yield) of 4-acetoxyindole: mp 97-98 C.; H-NMR (300 MHz, DMSO-d6)delta 2.32 (s,3H), 6.31 (s,1H), 6.71 (d,1H,J=8Hz), 7.05 (t, 1H, J=8 Hz), 7.28 (d,1H,J=8Hz), 7.32 (s,1H), 11.27 (s,1H).
  • 6
  • [ 866755-20-6 ]
  • [ 5460-31-1 ]
  • C12H8BrClN2O3 [ No CAS ]
 

Related Products

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 5460-31-1 ]

Aryls

Chemical Structure| 99-53-6

A338821 [99-53-6]

2-Methyl-4-nitrophenol

Similarity: 0.96

Chemical Structure| 2423-71-4

A213449 [2423-71-4]

2,6-Dimethyl-4-nitrophenol

Similarity: 0.93

Chemical Structure| 180628-74-4

A163381 [180628-74-4]

3-(Hydroxymethyl)-5-nitrophenol

Similarity: 0.91

Chemical Structure| 20876-37-3

A204107 [20876-37-3]

1-Benzyloxy-2-methyl-3-nitrobenzene

Similarity: 0.90

Chemical Structure| 5804-49-9

A151864 [5804-49-9]

(2-Methoxy-5-nitrophenyl)methanol

Similarity: 0.89

Nitroes

Chemical Structure| 99-53-6

A338821 [99-53-6]

2-Methyl-4-nitrophenol

Similarity: 0.96

Chemical Structure| 2423-71-4

A213449 [2423-71-4]

2,6-Dimethyl-4-nitrophenol

Similarity: 0.93

Chemical Structure| 180628-74-4

A163381 [180628-74-4]

3-(Hydroxymethyl)-5-nitrophenol

Similarity: 0.91

Chemical Structure| 20876-37-3

A204107 [20876-37-3]

1-Benzyloxy-2-methyl-3-nitrobenzene

Similarity: 0.90

Chemical Structure| 5804-49-9

A151864 [5804-49-9]

(2-Methoxy-5-nitrophenyl)methanol

Similarity: 0.89