Structure of 53911-68-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 53911-68-5 |
Formula : | C11H9ClO3 |
M.W : | 224.64 |
SMILES Code : | O=C1CC(C2=CC=C(Cl)C=C2)CC(O1)=O |
MDL No. : | MFCD00190250 |
InChI Key : | OCZRLOJECISNAO-UHFFFAOYSA-N |
Pubchem ID : | 104639 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P264-P271-P280-P302+P352-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.27 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 55.02 |
TPSA ? Topological Polar Surface Area: Calculated from |
43.37 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.66 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.91 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.29 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.58 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.0 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.29 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.67 |
Solubility | 0.485 mg/ml ; 0.00216 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.44 |
Solubility | 0.808 mg/ml ; 0.0036 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.7 |
Solubility | 0.0452 mg/ml ; 0.000201 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.31 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
2.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.6 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With acetyl chloride; for 2h;Heating; Reflux; | The suspension of commercial 3-(4- chlorophenyl)glutaric acid (15 g) in acetyl chloride (20 ml) was heated to reflux for 2 h. Then precipitation of the product is completed by addition of petrol ether (50 ml) and cooling to rt. The precipitate is isolated by suction filtration, washed with petrol ether, and dried in vacuo to give 3-(4-chlorophenyl)gluta?c anhydride (13.3 g) as colourless crystals. | |
With acetyl chloride; for 2h;Reflux; | 3-(4-Chlorophenyl)glutaric anhydride : The suspension of commercial 3-(4-chlorophenyl)glutaric acid (15 g) in acetyl chloride (20 ml) was heated to reflux for 2 h. Then precipitation of the product is completed by addition of petrol ether (50 ml) and cooling to rt. The precipitate is isolated by suction filtration, washed with petrol ether, and dried in vacuo to give 3-(4-chlorophenyl)glutaric anhydride (13.3 g) as colourless crystals |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-((1R,2R)-2-(dimethylamino)-1-(4-nitrophenyl)-3-(trityloxy)propyl)-3,5-bis-(trifluoromethyl)benzamide; In tert-butyl methyl ether; at 20℃; for 72h;Inert atmosphere; | General procedure: An alcohol (5 mmol) was added dropwise at room temperature under nitrogen to astirred solution of an anhydride 8 (0.5 mmol) and 7i (36.1 mg, 0.05 mmol) in MTBE(20 mL). The reaction was monitored by using thin-layer chromatography. Onceanhydride consumption was complete, the solvent was evaporated under reducedpressure and the residue was dissolved in CH2Cl2 (10 mL). The solution was washedwith saturated Na2CO3 (2 × 5 mL) and the combined aqueous phase were acidifiedwith excess 2 N HCl, followed by extraction with EtOAc (3 × 10 mL). The combinedorganic phases were dried over Na2SO4 and concentrated to afford the correspondingmonoester, without further purification by flash chromatography |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With quinindine; In toluene; at -35℃; for 168h;Inert atmosphere; | General procedure: To the cold 0.1 M toluene solution of anhydride (10 mmol), alkaloid (1.1 equiv) and alcohol (1.5 equiv) were added. The reaction mixture was stirred until >90% conversion was reached (see Table 3) and the reaction was stopped by the addition of 5% HCl. The organic layer was washed once more with 5% HCl and evaporated. Oily residue was dissolved in 2% K2CO3 and washed successively with EtOAc. Aqueous solution was acidified with HCl to pH 2 and extracted with EtOAc. The organic extracts were dried over Na2SO4 and evaporated in vacuo. | |
With quinine; In toluene; at -35℃; for 168h;Inert atmosphere; | General procedure: To the cold 0.1 M toluene solution of anhydride (10 mmol), alkaloid (1.1 equiv) and alcohol (1.5 equiv) were added. The reaction mixture was stirred until >90% conversion was reached (see Table 3) and the reaction was stopped by the addition of 5% HCl. The organic layer was washed once more with 5% HCl and evaporated. Oily residue was dissolved in 2% K2CO3 and washed successively with EtOAc. Aqueous solution was acidified with HCl to pH 2 and extracted with EtOAc. The organic extracts were dried over Na2SO4 and evaporated in vacuo. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In 1,4-dioxane; at 20℃; for 1h; | The solution of commercial 1,2-phenylenediamine (1.08g) and <strong>[53911-68-5]3-(4-chlorophenyl)glutaric anhydride</strong> (2.25 g) in 1,4-diotaoxane (7 ml) was stirred at rt for 10 min. A voluminous precipitate is formed which is kept at rt for further 50 min. The thick slurry is heated to reflux with methanol, cooled to rt, isolated by suction filtration, and washed with methanol. After drying in vacuo /V-(2-aminophenyl)-3-(4- chlorophenyl)glutaramic acid (2.1 g) is obtained as off-white solid. | |
In 1,4-dioxane; at 20℃; for 1h; | The solution of commercial 1,2-phenylenediamine (1.08 g) and <strong>[53911-68-5]3-(4-chlorophenyl)glutaric anhydride</strong> (2.25 g) in 1,4-dioxane (7 ml) was stirred at rt for 10 min. A voluminous precipitate is formed which is kept at rt for further 50 min. The thick slurry is heated to reflux with methanol, cooled to rt, isolated by suction filtration, and washed with methanol. After drying in vacuo N-(2-aminophenyl)-3-(4-chlorophenyl)glutaramic acid (2.1 g) is obtained as off- white solid |