Home Cart Sign in  
HazMat Fee +

There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.

Type HazMat fee for 500 gram (Estimated)
Excepted Quantity USD 0.00
Limited Quantity USD 15-60
Inaccessible (Haz class 6.1), Domestic USD 80+
Inaccessible (Haz class 6.1), International USD 150+
Accessible (Haz class 3, 4, 5 or 8), Domestic USD 100+
Accessible (Haz class 3, 4, 5 or 8), International USD 200+
Chemical Structure| 5071-96-5 Chemical Structure| 5071-96-5

Structure of 5071-96-5

Chemical Structure| 5071-96-5

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 5071-96-5 ]

CAS No. :5071-96-5
Formula : C8H11NO
M.W : 137.18
SMILES Code : C1=C(C=CC=C1OC)CN
MDL No. :MFCD00008115
InChI Key :GRRIMVWABNHKBX-UHFFFAOYSA-N
Pubchem ID :21156

Safety of [ 5071-96-5 ]

GHS Pictogram:
Signal Word:Danger
Hazard Statements:H302-H315-H318-H335
Precautionary Statements:P261-P280-P305+P351+P338
Class:8
UN#:2735
Packing Group:

Computational Chemistry of [ 5071-96-5 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 6
Fraction Csp3 0.25
Num. rotatable bonds 2
Num. H-bond acceptors 2.0
Num. H-bond donors 1.0
Molar Refractivity 40.61
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

35.25 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.68
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-3.86
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.0
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.21
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.43
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.29

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

1.43
Solubility 3690.0 mg/ml ; 26.9 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

3.71
Solubility 710000.0 mg/ml ; 5180.0 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.54
Solubility 0.396 mg/ml ; 0.00288 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-9.88 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.0

Application In Synthesis of [ 5071-96-5 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 5071-96-5 ]

[ 5071-96-5 ] Synthesis Path-Downstream   1~8

  • 1
  • [ 5071-96-5 ]
  • [ 124-38-9 ]
  • [ 3386-35-4 ]
  • n-octyl m-methoxybenzylcarbamate [ No CAS ]
  • 2
  • [ 75-15-0 ]
  • [ 5071-96-5 ]
  • [ 3386-35-4 ]
  • S-n-octyl (3-methoxybenzyl)dithiocarbamate [ No CAS ]
  • 3
  • [ 5071-96-5 ]
  • [ 6345-43-3 ]
  • 6-(3-methoxy-benzylcarbamoyl)-pyrimidine-4-carboxylic acid methyl ester [ No CAS ]
YieldReaction ConditionsOperation in experiment
In N,N-dimethyl-formamide; at 80℃; for 18h; A solution of commercially available <strong>[6345-43-3]pyrimidine-4,6-dicarboxylic acid dimethyl ester</strong> (1.96 g) and commercially available 3-methoxy-benzylamine (1.38 mL) in dry N,N-dimethylformamide (10 mL) was placed in a preheated oil bath (80 C.). After stirring at this temperature for 18 h the mixture was concentrated and flash filtered (silica, cyclohexane/ethyl acetate). The obtained material was suspended in dry tetrahydrofurane (10 mL) and treated with a solution of lithium hydroxide (642 mg) in water (15 mL). The resulting mixture was stirred at room temperature for 16½ h, diluted with water (35 mL), washed with dichloromethane (3×50 mL) and acidified by addition of a 1M aqueous solution of hydrochloric acid (20 mL). The formed precipitate was isolated by suction, washed with water (2×50 mL) again suspended/dissolved in water (200 mL) and ultrasonificated for 5 min. The remaining precipitate was isolated by suction and dried under reduced pressure to afford the title compound (700 mg; 24%). [MH]+=288.
In N,N-dimethyl-formamide; at 80℃; for 18h; Preparative Example 202; Step A; A solution of commercially available <strong>[6345-43-3]pyrimidine-4,6-dicarboxylic acid dimethyl ester</strong> (1.96 g) and commercially available 3-methoxy-benzylamine (1.38 mL) in dry N,N-dimethylformamide (10 mL) was placed in a preheated oil bath (80 C.). After stirring at this temperature for 18 h the mixture was concentrated and flash filtered (silica, cyclohexane/ethyl acetate). The obtained material was suspended in dry tetrahydrofuran (10 mL) and treated with a solution of lithium hydroxide (642 mg) in water (15 mL). The resulting mixture was stirred at room temperature for 16½ h, diluted with water (35 mL), washed with dichloromethane (3×50 mL) and acidified by addition of a 1M aqueous solution of hydrochloric acid (20 mL). The formed precipitate was isolated by suction, washed with water (2×50 mL) again suspended/dissolved in water (200 mL) and ultrasonificated for 5 min. The remaining precipitate was isolated by suction and dried under reduced pressure to afford the title compound (700 mg; 24%). [MH]+288.
  • 4
  • [ 4795-29-3 ]
  • [ 7154-73-6 ]
  • [ 2038-03-1 ]
  • [ 4572-03-6 ]
  • [ 27757-85-3 ]
  • [ 109-12-6 ]
  • [ 3731-53-1 ]
  • [ 107-10-8 ]
  • [ 7663-77-6 ]
  • [ 6628-04-2 ]
  • [ 2620-50-0 ]
  • polystyrene carboxaldehyde resin [ No CAS ]
  • [ 5071-96-5 ]
  • [ 617-89-0 ]
  • [ 28466-26-4 ]
  • [ 42185-03-5 ]
  • [ 453-71-4 ]
  • [ 19293-58-4 ]
  • [ 75-04-7 ]
  • [ 62-53-3 ]
  • [ 1003-03-8 ]
  • [ 51387-90-7 ]
  • [ 74-89-5 ]
  • [ 100-46-9 ]
  • [ 4152-90-3 ]
  • [ 68-41-7 ]
  • C9H8FN2O3Pol [ No CAS ]
  • C10H10FN2O3Pol [ No CAS ]
  • C11H12FN2O3Pol [ No CAS ]
  • C14H10FN2O3Pol [ No CAS ]
  • C11H8FN4O3Pol [ No CAS ]
  • C12H8FN4O3Pol [ No CAS ]
  • C13H10FN2O4Pol [ No CAS ]
  • C15H12FN2O3Pol [ No CAS ]
  • C14H11FN3O3Pol [ No CAS ]
  • C13H14FN2O3Pol [ No CAS ]
  • C13H10FN2O3PolS [ No CAS ]
  • C13H16FN2O4Pol [ No CAS ]
  • C13H14FN2O4Pol [ No CAS ]
  • C16H14FN2O4Pol [ No CAS ]
  • C11H9FN3O5Pol [ No CAS ]
  • C15H11ClFN2O3Pol [ No CAS ]
  • C17H17FN3O3Pol [ No CAS ]
  • C14H17FN3O3Pol [ No CAS ]
  • C14H17FN3O4Pol [ No CAS ]
  • C15H19FN3O3Pol [ No CAS ]
  • C16H12FN2O5Pol [ No CAS ]
  • C18H13FN3O3Pol [ No CAS ]
  • C15H17FN3O4Pol [ No CAS ]
  • C16H22FN4O3Pol [ No CAS ]
YieldReaction ConditionsOperation in experiment
A library of compounds in which R4 was various groups having the formula [CONHR »] was prepared by the process described above using 4-fluoro-3-nitrobenzoic acid, as follows: [72] Aldehyde resin was mixed with a primary amine (R17-NH2) in [DICHLOROETHANE] (DCE), triethylorthoformate (TEOF), and DMF (containing [1%] acetic acid) in a 1: 1: 1 ratio. After shaken overnight, sodium triacetoxyborohydride (20 eq. ) dissolved in DMF was added (Abdel-Magid, A. F. , et al., Tetrahedron Lett, 3 1: 5595-5598 (1990) ). After the mixture was shaken at room temperature overnight, the resin was filtered and washed with DMF (3 x 5 mL), [MEOH] [(3 X 5] mL), DMF [(3 X 5] mL), [MEOH] [(3 X 5] mL), and [CH2CL2] [(3 X 5] mL). The resin was washed twice with 5 mL DMF containing [1%] Hunig's base. To the filtered resin was added a mixture of 4-fluoro-3-nitrobenzoic acid (FNBA, 10 eq. ) and diisopropylcarbodiimide (DIC, 5 eq. ) in 2: 1 DMF : DCM. After shaking at room temperature overnight, the resin was filtered and washed with DMF (3 x 5 mL) and [CH2C12] (3 x 5 mL). [73] The resin was shaken with a primary amine [(R2-NH2)] in DMF for 8 hrs, filtered, and washed with DMF (6 x 5 mL), [MEOH] [(3 X 5] mL), and CH2C12 (3 x 5 mL). The aryl nitro group was reduced by the addition of tin (II) chloride dihydrate (20 eq. , >2 M) and N-methyl morpholine (NMM, 20 eq. ) in N-methyl pyrrolidinone (NMP). After shaken at room temperature overnight, the resin was filtered and washed with NMP (3 x 5 mL), [MEOH] (3 x 5 mL), and [CH2CI2 (3 X 5] mL). The resulting resin was shaken at room temperature with cyanogen bromide (5 eq. ) overnight, filtered, and washed with CH2Cl2 (3 x 5 mL), [MEOH] (3 x 5 mL), and CH2CI2 (3 x 5 mL). To produce a free amine, the resin was shaken for 30 min. in CHCl2 with the addition of sodium methoxide in methanol, filtered, and washed with CH2Cl2 [(4 X 5] mL). [[74]] In the final diversification step, the resin was heated at 500 C in DMF with a mono- substituted epoxide [[RLCH (-CH2O-)].] After shaking for 2 to 4 days the resin was filtered and washed with DMF (5 x 5 mL), [MEOH] [(3 X 5] mL), and CH2Cl2 (3 x 5 mL). T he resin-bound benzimidazole was cleaved from the solid-support by treatment with TFA: [CH2C12] (2: 3) for 1 hour at room temperature.
  • 5
  • [ 5071-96-5 ]
  • [ 23020-15-7 ]
  • [ 1531592-22-9 ]
  • 6
  • [ 5071-96-5 ]
  • [ 422-64-0 ]
  • C11H10F5NO2 [ No CAS ]
  • 7
  • [ 440627-14-5 ]
  • [ 5071-96-5 ]
  • C22H18N2O3S [ No CAS ]
YieldReaction ConditionsOperation in experiment
52% With benzotriazol-1-ol; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; N-ethyl-N,N-diisopropylamine; In dichloromethane; N,N-dimethyl-formamide; at 0 - 20℃; for 16h;Inert atmosphere; [000210] To a stirred solution of 6 (50 mg, 0.18 mmol) in DMF (3 mL) under argon atmosphere were added EDCI.HC1 (50 mg, 0.22 mmol), HOBt (35 mg, 0.22 mmol), 2-(5-methyl- 1, 3, 4-thiadiazol-2-yl) ethan-1-amine hydrochloride 187 (50 mg, 0.22 mmol) and diisopropyl ethyl amine (0.1 mL, 0.55 mmol) at 0 C; warmed to RT and stirred for 16 h. The reaction was monitored by TLC; after completion of the reaction, the reaction mixture was diluted with water (20 mL) and stirred for 1 h. The crude was extracted with EtOAc or the precipitated material was either directly dried in vacuo or triturated or purified through silica gel column chromatography to afford the desired compound.
  • 8
  • [ 5071-96-5 ]
  • [ 4385-76-6 ]
  • [ 862722-95-0 ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 5071-96-5 ]

Aryls

Chemical Structure| 2393-23-9

A944169 [2393-23-9]

4-Methoxybenzylamine

Similarity: 1.00

Chemical Structure| 34967-24-3

A110697 [34967-24-3]

3,5-Dimethoxybenzyl amine

Similarity: 0.95

Chemical Structure| 6850-60-8

A365575 [6850-60-8]

(4-Ethoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 6850-57-3

A587328 [6850-57-3]

(2-Methoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 702-24-9

A326303 [702-24-9]

4-Methoxy-N-methylbenzylamine

Similarity: 0.93

Ethers

Chemical Structure| 2393-23-9

A944169 [2393-23-9]

4-Methoxybenzylamine

Similarity: 1.00

Chemical Structure| 34967-24-3

A110697 [34967-24-3]

3,5-Dimethoxybenzyl amine

Similarity: 0.95

Chemical Structure| 6850-60-8

A365575 [6850-60-8]

(4-Ethoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 6850-57-3

A587328 [6850-57-3]

(2-Methoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 702-24-9

A326303 [702-24-9]

4-Methoxy-N-methylbenzylamine

Similarity: 0.93

Amines

Chemical Structure| 2393-23-9

A944169 [2393-23-9]

4-Methoxybenzylamine

Similarity: 1.00

Chemical Structure| 34967-24-3

A110697 [34967-24-3]

3,5-Dimethoxybenzyl amine

Similarity: 0.95

Chemical Structure| 6850-60-8

A365575 [6850-60-8]

(4-Ethoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 6850-57-3

A587328 [6850-57-3]

(2-Methoxyphenyl)methanamine

Similarity: 0.95

Chemical Structure| 702-24-9

A326303 [702-24-9]

4-Methoxy-N-methylbenzylamine

Similarity: 0.93