Home Cart Sign in  
Chemical Structure| 4494-16-0 Chemical Structure| 4494-16-0

Structure of 4494-16-0

Chemical Structure| 4494-16-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 4494-16-0 ]

CAS No. :4494-16-0
Formula : C18H32O4
M.W : 312.44
SMILES Code : OC(=O)CCCCCCCC=CCCCCCCCC(O)=O
MDL No. :MFCD23135466

Safety of [ 4494-16-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 4494-16-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 22
Num. arom. heavy atoms 0
Fraction Csp3 0.78
Num. rotatable bonds 16
Num. H-bond acceptors 4.0
Num. H-bond donors 2.0
Molar Refractivity 91.71
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

74.6 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

3.52
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

5.9
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

5.17
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

3.55
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

4.98
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

4.62

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-4.44
Solubility 0.0114 mg/ml ; 0.0000365 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-7.24
Solubility 0.000018 mg/ml ; 0.0000000575 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-4.37
Solubility 0.0134 mg/ml ; 0.0000429 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

Yes
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-4.02 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

1.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.56

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

3.07

Application In Synthesis of [ 4494-16-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 4494-16-0 ]

[ 4494-16-0 ] Synthesis Path-Downstream   1~2

  • 1
  • suberin [ No CAS ]
  • [ 4494-16-0 ]
  • [ 3329-38-2 ]
  • C17H32O4 [ No CAS ]
  • [ 69232-68-4 ]
  • [ 506-45-6 ]
  • [ 496-86-6 ]
  • [ 505-56-6 ]
YieldReaction ConditionsOperation in experiment
Air-dried bark was cut in strips, granulated and ground to give a powder having particles of 20 mesh, followed by extraction of said powder for 24 hours with aceton in a Soxhlet apparatus. The remaining solid material was filtered and dried. The solid material (100 g) was refluxed in basic 2-propanol (22 g/0.55 mol NaOH in 1 liter of alcohol) for 1 hour. The solid material was filtered from the solution while still hot. The solution was still refluxed for 15 min. The solution was kept in a freezer at least 24 hours. The precipitate was filtered and dried. The product containing sodium salts of carboxylic acids of suberin was a yellowish powder. EPO <DP n="19"/>Example 2Preparation of suberin acidsThe hydrolysis product of suberin (6 g) obtained in Example 1 was dissolved in water (750 ml) in a bath at about 100 C, followed by cooling the solution. 0.25 M sulphuric acid was added to the solution to adjust the pH of the solution between 2 and 3. The mixture was extracted with diethyl ether (400 + 200 + 200 ml) and dried with sodium sulphate. The solvent was removed by means of a rotary evaporator, followed by drying of the product in vacuum at room temperature. The product contained fatty acids of suberin, the yield thereof being between 84 and 90 %. The product was a yellowish powder.1H NMR (ppm): 1.0-1.6(m) CH2; 2.0 CH2; 2.2(t) CH2CO2; 2.8 CH(O)CH; 3.2 CH(OH)CH(OH); 3.4(t) CH2OH; 3.8 CH(OH); 4.0, 4.2 OH; 5.3 CH=CH; 11.8 OH 13C NMR (ppm): 24-28(5s) CH2; 29(m), 32 CH2; 34 CH2COOH; 37 CH2CH(OH); 56 CH(O)CH; 61 CH2OH; 70 CH(OH); 73 CH(OH)CH(OH); 130 CH=CH; 174 COOHContents of Fatty acid content of suberin is shown in Table 4, by NMR analysis.Table 4. Fatty acids of suberin
  • 2
  • [ 4494-16-0 ]
  • [ 3788-56-5 ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 4494-16-0 ]

Carboxylic Acids

Chemical Structure| 112-86-7

A308040 [112-86-7]

(Z)-Docos-13-enoic acid

Similarity: 1.00

Chemical Structure| 18719-24-9

A127646 [18719-24-9]

Oct-7-enoic acid

Similarity: 0.90

Chemical Structure| 591-80-0

A649272 [591-80-0]

Pent-4-enoic acid

Similarity: 0.86

Chemical Structure| 1614-73-9

A102795 [1614-73-9]

Cyclohept-4-enecarboxylic acid

Similarity: 0.84

Chemical Structure| 2305-26-2

A214094 [2305-26-2]

(1R,2S)-rel-Cyclohex-4-ene-1,2-dicarboxylic acid

Similarity: 0.81