Structure of 392-71-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 392-71-2 |
Formula : | C6H3Cl2FO |
M.W : | 180.99 |
SMILES Code : | OC1=C(Cl)C=C(F)C=C1Cl |
MDL No. : | MFCD00010675 |
InChI Key : | BOJVIFKSTRCIRJ-UHFFFAOYSA-N |
Pubchem ID : | 94950 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319 |
Precautionary Statements: | P264-P280-P302+P352+P332+P313+P362+P364-P305+P351+P338+P337+P313 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
64.9% | To a solution of 2,6-dichloro-4-fluoro-phenol (2 g, 11 .11 mmol) in 20 mL anhydrous DMF was added K2003 (3.07 g, 22.22 mmol) at room temperature. After stirring for 30 mi EtI (3.47 g, 22.22 mmol) was added and the mixture was stirred at room temperature overnight. Waterwas added and the product was extracted with MTBE. The organic phase was washed with brine, dried and concentrated in vacuum to give the crude product, which was purified by column chromatography eluted with 100 % cyclohexane to afford 1 ,3-dichloro-2-ethoxy-5-fluoro- benzene (1 .5 g, 64.9 %).1H NMR (0D013, 400MHz): ö 1.46 (t, J=7.03 Hz, 3 H) 4.07 (q, J=7.03 Hz, 2 H) 7.07 (d, J=7.78 Hz, 2 H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
72.8% | The mixture of <strong>[392-71-2]2,6-dichloro-4-fluorophenol</strong> (362 mg, 2.0 mmol), potassium carbonate (910 mg, 6.6 mmol), ethyl bromoacetate (500 mg, 3.0 mmol) and acetone (25 ml) was refluxed for 12 h. After cooling, the mixture was filtered to remove potassium carbonate. The filtrate was concentrated under reduced pressure. To this residue, 10 ml dioxane and 14 ml 5% sodium hydroxide solution were added. After the mixture was stirred at room temperature overnight, it was acidified with concentrated hydrochloric acid to pH 2, and then extracted three times with ethyl acetate (15 ml each). Organic phases were combined, washed with water and brine, dried over magnesium sulfate, filtered, and then evaporated in vacuo. The residue was recrystallized from ethyl acetate and petroleum ether to give 348 mg 2,6-dichloro-4-fluorophenoxyacetic acid as white crystals, mp 155-158 C., yield: 72.8%. The chemical structure analysis was performed by 1HNMR (Acetone-d6, 600 MHz): δ 7.36 (m, 2H, Ar-H), 4.67 (s, 2H, OCH2CO). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Example 5. Preparation of 4-Fluoro-2,6-dichlorophenol A mixture of 082 g of 2,6-dichlorophenol, 1.67 g of N-fluoro-2-chloro-6-(trichloromethyl) pyridinium rfluoroborate, and 40 ml of 1,1,2-trichloroethane was placed in a 100 ml 3-necked round bottomed flask equipped with a magnetic stirring bar, a thermometer, and a reflux condenser. The mixture was heated to 55 C. and allowed to react at that temperature for 8 hours under nitrogen. The mixture was then allowed to cool. Analysis by standardized gas-liquid chromatography using a mass spectrometer detector indicated that the title product was present in 24 percent conversion. The product identity was confirmed by its known 19F and 1 H NMR spectra. |