Structure of 3883-58-7
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 3883-58-7 |
Formula : | C7H10O2 |
M.W : | 126.15 |
SMILES Code : | O=C1C(C)(C)C(CC1)=O |
MDL No. : | MFCD00074900 |
InChI Key : | VXVZVJNSRQRUTI-UHFFFAOYSA-N |
Pubchem ID : | 19763 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.71 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 33.79 |
TPSA ? Topological Polar Surface Area: Calculated from |
34.14 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.36 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.55 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.94 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.31 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.92 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.02 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.97 |
Solubility | 13.6 mg/ml ; 0.107 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.84 |
Solubility | 18.3 mg/ml ; 0.145 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.77 |
Solubility | 2.16 mg/ml ; 0.0171 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.68 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.36 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93% | The published procedure was followed. (Agosta, W. C.; Smith, A. B. J. Org. Chem. 1970, 35, 3856) A mixture of 2-methyl-1,3-cyclopentanedione (10.025 g, 89.4 mmol, Aldrich), methyl iodide (6.0 mL, 96.4 mmol, Aldrich), and KOH (5.097 g, 90.8 mmol) in H2O (25 mL)/dioxane (75 mL) was heated at reflux. After 5 h, a solution of KOH (2 g) and MeI (2.4 mL) in H2O (5 mL)/dioxane (15 mL) was added and after another 3 h at reflux the solution was allowed to stir at room temperature overnight. In the morning, the reaction was continued by addition of a solution of KOH (2 g) and MeI (2.4 mL) in H2O (5 mL)/dioxane (15 mL) and heating at reflux. After 4 h, the mixture was allowed to cool to room temperature and was extracted with ether (1?100 mL, 3?75 mL). The combined ether extracts were evaporated, the residue combined with HCl (50 mL 10percent), and the resulting mixture was placed in a 120 C. oil bath until boiling was observed (ca. 15 min.). The mixture was then allowed to cool to room temperature, was neutralized by addition of NaHCO3 solution (150 mL, saturated) and the resulting mixture then extracted with CH2Cl2 (4?75 mL). The combined CH2Cl2 solution was dried (MgSO4), filtered and evaporated to leave a brown oil (10.474 g, 83 mmol, 93percent) which was used directly in the next step. | |
93% | With potassium hydroxide; In 1,4-dioxane; water; at 20℃;Reflux; | Synthesized according to Agosta and Smith, J. Org. Chem., 35: 3856 (1970). A mixture of 2-methyl-1,3-cyclopentanedione (10.025 g, 89.4 mmol, Aldrich), methyl iodide (6.0 mL, 96.4 mmol, Aldrich), and KOH (5.097 g, 90.8 mmol) in water (25 mL)/dioxane (75 mL) was heated at reflux. After 5 hours, a solution of KOH (2 g) and Mel (2.4 mL) in water (5 mL)/dioxane (15 mL) was added and after another 3 hours at reflux, the solution was stirred at room temperature overnight. A solution of KOH (2 g) and Mel (2.4 mL) in water (5 mL)/dioxane (15 mL) was added to the overnight reaction and heating at reflux. After 4 hours, the mixture was cooled to room temperature and extracted with ether (1×100 mL, 3×75 mL). The combined ether extracts were evaporated, the residue combined with 10percent HCl (50 mL), and the resulting mixture placed in a 120° C. oil bath until it began boiling (ca. 15 minutes). The mixture was cooled to room temperature, neutralized by addition of saturated NaHCO3 solution (150 mL) and the resulting mixture extracted with CH2Cl2 (4×75 mL). The combined CH2Cl2 solution was dried (MgSO4), filtered and evaporated to leave a brown oil (10.474 g, 83 mmol, 93percent) which was used directly in the next step. |
36% | 2-Methyl-1,3-cyclopentanodione (7) (1 eq, 351 mmol, 39.4 g) was added to a solution of NaOH (1 eq, 351 mmol, 14.1 g) in water (75 mL) at 0 °C. After stirring for 15 min, the solution was evaporated under reduced pressure to dryness. Sodium salt of 7 was obtained with quantitative yield. To a suspension of sodium salt of 7 (47.4 g) in DMF (300 mL), MeI (1.5 eq, 526.5 mmol, 33.0 mL) was added and resulting mixture was stirred vigoriously overnight. Then, the reaction mixture was poured into water (2 L) and extracted with CHCl3 (4x100 mL). The combined extracts were washed with water (5x150 mL) and brine (200 mL), dried over anh. MgSO4 and concentrated under reduced pressure to yield dark oil (35.7 g). The oil was dissolved in 12percent HCl (330 mL) and refluxed for 1 h. The reaction mixture was cooled to rt, neutralized (to pH = 7) with 20percent aq. NaOH. Then, sat. aq. solution of Na2CO3 (100 mL) was added and the product was extracted with CHCl3 (4x100 mL). The combined extracts were washed with brine (100 mL), dried over anh. MgSO4 and evaporated under reduced pressure to afford 8 (15.79 g, 36percent). Physical state: pale brown solid.; IR (neat, cm-1): 2980, 1719, 1459, 1286, 993.; 1H NMR (400 MHz, CDCl3), delta (ppm): 2.80 (s, 4H), 1.15 (s, 6H). |
With potassium hydroxide; In 1,4-dioxane; water; for 11h;Reflux; | A mixture of 2-methylcyclopentane-l,3-dione (49.98 g, 446 mmol), potassium hydroxide (25.5 g, 455 mmol) and iodomethane (30.1 mL, 481 mmol) in dioxane (390 mL) and water (130 mL) was heated to reflux for 5 h. A biphasic mixture of potassium hydroxide (10.4 g), iodomethane (12.5 mL), water (26 mL) and dioxane (78 mL) was added. The mixture was heated at reflux for 3 additional hours and then stirred at ambient temperature overnight. Another portion of a biphasic mixture of potassium hydroxide (10.4 g), iodomethane (12.5 mL), water (26 mL) and dioxane (78 mL) was added. The mixture was heated at reflux for 3 h, cooled to room temperature and extracted with ether (600 mL, then 2x400 mL). The combined extracts were concentrated using a rotavap while keeping the bath temperature at or below room temperature to prevent loss of volatile product. The residue was treated with 10percent hydrochloric acid (250 mL) and placed in a 120 °C oil bath until it started to boil (~15 min). The mixture was cooled with an ice-water bath, diluted with water (250 mL) and treated with careful addition of sodium carbonate until carbon dioxide release stopped. The pH of the solution was 8-9. The mixture was extracted with dichloromethane (4x200 mL). The combined extracts were dried (MgS04), filtered and concentrated while keeping water bath at or below room temperature. The residue was further dried under vacuum briefly to remove residual solvent to give 2,2- dimethylcyclopentane-l,3-dione as tan solid (38.1 g, 68percent yield). XH NMR (400 MHz, chloroform-if) delta ppm 2.81 (4 H, s), 1.16 (6 H, s); LC retention time: 0.990 (analytical HPLC Method F). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
33% | With baker's yeast; In water; at 35℃; for 50h; | The published procedure was followed. (Brooks, D. W.; Hormoz, M.; Grothaus, P. G. J. Org. Chem. 1987, 52, 3223) A 35 C. (internal temperature) solution of D-glucose (106.73 g, 592 mmol, Aldrich) in H2O (690 mL) in a 4 L Erlenmeyer was treated with baker's yeast (71.065 g, Fleischmann's). The mixture was allowed to ferment for 2 h, then <strong>[3883-58-7]2,2-dimethyl-cyclopentane-1,3-dione</strong> (2) (7.316 g, 58 mmol) was added. [0108] The mixture was stirred for 48 h and then filtered through celite, washing with about 1 L CH2Cl2. The filtration was difficult due to the thick consistency of the yeast and it helped to continually add CH2Cl2 to the mixture and scrape the top of the celite layer with a spatula. The filtrate was transferred to a separatory funnel, and 100 mL brine was added and the layers were separated. Brine (400 mL) was added to the aqueous layer and the resulting solution extracted further with CH2Cl2 (3?500 mL). The combined CH2Cl2 solution was dried (MgSO4), filtered and evaporated to leave a yellow oil. Flash chromatography (11?5 cm, 20percent EtOAc/hexs>25percent>30percent>40percent>50percent) gave alcohol 3 (2.435 g, 19 mmol, 33percent). |
33% | With D-glucose; In water; at 30℃; for 48h;Enzymatic reaction; | Synthesized according to Brooks, et al., J. Org. Chem., 52: 3223 (1987). A 35° C. (internal temperature) solution of D-glucose (106.73 g, 592 mmol, Aldrich) in water (690 mL) in a 4 L Erlenmeyer was treated with baker's yeast (71.065 g, Fleischmann's). The mixture was fermented for 2 hours, and <strong>[3883-58-7]2,2-dimethyl-cyclopentane-1,3-dione</strong> (2) (7.316 g, 58 mmol) was added. The mixture was stirred for 48 hours and filtered through celite, washing with about 1 L CH2Cl2. About 100 mL of brine was added to the filtrate and the layers separated using a separatory funnel. Brine (400 mL) was added to the aqueous layer and the resulting solution extracted further with CH2Cl2 (3×500 mL). The combined CH2Cl2 solution was dried (MgSO4), filtered and evaporated to leave a yellow oil. Flash chromatography (11×5 cm, 20percent EtOAc/hexs?25percent?30percent?40percent?50percent) gave alcohol 3 (2.435 g, 19 mmol, 33percent). (0210) The enantiomeric excess of 3 was assayed by 1H NMR of the corresponding Mosher's ester which was prepared by treatment of alcohol 3 (11 mg, 0.09 mmol) in dichloroethane (0.3 mL, Aldrich) with pyridine (27 muL, 0.33 mmol, Aldrich) and (R)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid chloride (58 muL, 0.31 mmol, Fluka). The mixture was stirred overnight and then partitioned between water (10 mL) and ether (10 mL). The ether layer was washed with 1 M HCl (10 mL) and saturated NaHCO3 solution and then dried (MgSO4), filtered and evaporated. 1H NMR analysis was done on the crude ester. |