There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
*Storage: Inert atmosphere,Room Temperature.
*Shipping: Normal
4.5
*For Research Use Only !
Change View
Size | Price | USA Stock *0-1 Day | Global Stock *5-7 Days | In Stock |
25g | łÇò¶ÊÊ | In Stock | In Stock | Login |
100g | łË˶ÊÊ | In Stock | In Stock | Login |
500g | łòò¶ÊÊ | In Stock | In Stock | Login |
1kg | łÇÇʶÊÊ | In Stock | In Stock | Login |
Please Login or Create an Account to: See VIP prices and availability
łÇò¶ÊÊ
łË˶ÊÊ
łòò¶ÊÊ
łÇÇʶÊÊ
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Schumacher, Tanner J ; Iyer, Ananth V ; Rumbley, Jon , et al. BMC Cancer,2024,24(1):1415.
Abstract: Background: Cancer cells alter their metabolic phenotypes with nutritional change. Single agent approaches targeting mitochondrial metabolism in cancer have failed due to either dose limiting off target toxicities, or lack of significant efficacy in vivo. To mitigate these clinical challenges, we investigated the potential utility of repurposing FDA approved mitochondrial targeting anthelmintic agents, niclosamide, IMD-0354 and pyrvinium pamoate, to be combined with GLUT1 inhibitor BAY-876 to enhance the inhibitory capacity of the major metabolic phenotypes exhibited by tumors. Methods: To test this, we used breast cancer cell lines MDA-MB-231 and 4T1 which exhibit differing basal metabolic rates of glycolysis and mitochondrial respiration, respectively. Metabolic characterization was carried out using Seahorse XFe96 Bioanalyzer and statistical analysis was carried out via ANOVA. Results: Here, we found that specific responses to mitochondrial and glycolysis targeting agents elicit responses that correlate with tested cell lines basal metabolic rates and fuel preference, highlighting the potential to cater metabolism targeting treatment regimens based on specific tumor nutrient handling. Inhibition of GLUT1 with BAY-876 potently inhibited glycolysis in both MDA-MB-231 and 4T1 cells, and niclosamide and pyrvinium pamoate perturbed mitochondrial respiration that resulted in potent compensatory glycolysis in the cell lines tested. Conclusion: In this regard, combination of BAY-876 with both mitochondrial targeting agents resulted in inhibition of compensatory glycolysis and subsequent metabolic crisis. These studies highlight targeting tumor metabolism as a combination treatment regimen that can be tailored by basal and compensatory metabolic phenotypes.
Show More >
Keywords: Drug repurposing ; Anthelmintic ; BAY-876 ; Niclosamide ; Pyrvinium ; Anticancer
Show More >
Tanner J. Schumacher ; Ananth V. Iyer ; Jon Rumbley , et al. bioRxiv,2024:2024.05.02.592272.
Abstract: Cancer cells alter their metabolic phenotypes with nutritional change. Single agent approaches targeting mitochondrial metabolism in cancer have failed due to either dose limiting off target toxicities, or lack of efficacy in vivo. To mitigate these clinical challenges, we investigated the potential utility of repurposing FDA approved mitochondrial targeting anthelmintic agents, niclosamide and pyrvinium pamoate, to be combined with GLUT1 inhibitor BAY-876 to enhance the inhibitory capacity of the major metabolic phenotypes exhibited by tumors. To test this, we used breast cancer cell lines MDA-MB-231 and 4T1 which exhibit differing basal metabolic rates of glycolysis and mitochondrial respiration, respectively. Here, we found that specific responses to mitochondrial and glycolysis targeting agents elicit responses that correlate with tested cell lines basal metabolic rates and fuel preference, highlighting the potential to cater metabolism targeting treatment regimens based on specific tumor nutrient handling. Inhibition of GLUT1 with BAY-876 potently inhibited glycolysis in both MDA-MB-231 and 4T1 cells, and niclosamide and pyrvinium pamoate perturbed mitochondrial respiration that resulted in potent compensatory glycolysis in the cell lines tested. In this regard, combination of BAY-876 with both mitochondrial targeting agents resulted in inhibition of compensatory glycolysis and subsequent metabolic crisis. These studies warrant further investigation into targeting tumor metabolism as a combination treatment regimen that can be tailored by basal and compensatory metabolic phenotypes.
Show More >
CAS No. : | 321-14-2 |
Formula : | C7H5ClO3 |
M.W : | 172.57 |
SMILES Code : | O=C(O)C1=CC(Cl)=CC=C1O |
MDL No. : | MFCD00002457 |
InChI Key : | NKBASRXWGAGQDP-UHFFFAOYSA-N |
Pubchem ID : | 9447 |
GHS Pictogram: | ![]() |
Signal Word: | Danger |
Hazard Statements: | H301 |
Precautionary Statements: | P264-P270-P301+P310+P330-P405-P501 |
Class: | 6.1 |
UN#: | 2811 |
Packing Group: | Ⅲ |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 40.43 |
TPSA ? Topological Polar Surface Area: Calculated from | 57.53 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from | 1.09 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by | 3.09 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from | 1.74 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from | 1.59 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by | 1.38 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions | 1.78 |
Log S (ESOL):? ESOL: Topological method implemented from | -3.19 |
Solubility | 0.11 mg/ml ; 0.000639 mol/l |
Class? Solubility class: Log S scale | Soluble |
Log S (Ali)? Ali: Topological method implemented from | -3.97 |
Solubility | 0.0187 mg/ml ; 0.000108 mol/l |
Class? Solubility class: Log S scale | Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by | -1.81 |
Solubility | 2.69 mg/ml ; 0.0156 mol/l |
Class? Solubility class: Log S scale | Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg | High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg | Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) | No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) | No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) | No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) | No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) | No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) | No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from | -5.16 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from | 0.0 |
Ghose? Ghose filter: implemented from | None |
Veber? Veber (GSK) filter: implemented from | 0.0 |
Egan? Egan (Pharmacia) filter: implemented from | 0.0 |
Muegge? Muegge (Bayer) filter: implemented from | 1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat | 0.56 |
PAINS? Pan Assay Interference Structures: implemented from | 0.0 alert |
Brenk? Structural Alert: implemented from | 0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from | No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) | 1.18 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
13.9% | With trichlorophosphate; In xylene; at 140℃; for 2h; | A mixture of 5-chlorosalicylic acid(172.6mg, 1mmol), 3,5-bis(trifluoromethyl)phenol(152 muL, 1mmol), phosphorus oxychloride(40 muL, 0.43mmol) and xylene(3mL) was stirred at 140°C for 2 hours. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with ethyl acetate. After the ethyl acetate layer was washed with brine and dried over anhydrous sodium sulfate, the residue obtained by evaporation of the solvent under reduced pressure was purified by column chromatography on silica gel(n-hexane:ethyl acetate=10:1-->5:1) to give the title compound(53.6mg, 13.9percent) as a white crystal.1H-NMR(CDCl3): delta 7.04(1H, d, J=9.0Hz), 7.54(1H, dd, J=9.0, 2.7Hz), 7.75(2H, s), 7.86(1H, s), 8.02(1H, d, J=2.7Hz), 10.09(1H, s). |
13.9% | With trichlorophosphate; In xylene; at 140℃; for 2h; | A mixture of 5-chlorosalicylic acid(172.6mg, 1mmol), 3,5-bis(trifluoromethyl)phenol(152 muL, 1mmol), phosphorus oxychloride(40 muL, 0.43mmol) and xylene(3mL) was stirred at 140°C for 2 hours. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with ethyl acetate. After the ethyl acetate layer was washed with brine and dried over anhydrous sodium sulfate, the residue obtained by evaporation of the solvent under reduced pressure was purified by column chromatography on silica gel(n-hexane:ethyl acetate=10:1-->5:1) to give the title compound(53.6mg, 13.9percent) as a white crystal.1H-NMR(CDCl3): delta 7.04(1H, d, J=9.0Hz), 7.54(1H, dd, J=9.0, 2.7Hz), 7.75(2H, s), 7.86(1H, s), 8.02(1H, d, J=2.7Hz), 10.09(1H, s). |
13.9% | With trichlorophosphate; In xylene; at 140℃; for 2h; | A mixture of 5-chlorosalicylic acid(172.6mg, 1mmol), 3,5-bis(trifluoromethyl)phenol(152 muL, 1mmol), phosphorus oxychloride(40 muL, 0.43mmol) and xylene(3mL) was stirred at 140°C for 2 hours. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with ethyl acetate. After the ethyl acetate layer was washed with brine and dried over anhydrous sodium sulfate, the residue obtained by evaporation of the solvent under reduced pressure was purified by column chromatography on silica gel(n-hexane:ethyl acetate=10:1-->5:1) to give the title compound(53.6mg, 13.9percent) as a white crystal.1H-NMR(CDCl3): delta 7.44(1H, d, J=9.0Hz), 7.54(1H, dd, J=9.0, 2.7Hz), 7.75(2H, s), 7.86(1H, s), 8.02(1H, d, J=2.7Hz), 10.09(1H, s). |
13.9% | With trichlorophosphate; In xylene; at 140℃; for 2h; | A mixture of 5-chlorosalicylic acid(172.6mg, 1mmol), 3,5-bis(trifluoromethyl)phenol(152 muL, 1mmol), phosphorus oxychloride(40 muL, 0.43mmol) and xylene(3mL) was stirred at 140°C for 2 hours. After the reaction mixture was cooled to room temperature, it was poured into water and extracted with ethyl acetate. After the ethyl acetate layer was washed with brine and dried over anhydrous sodium sulfate, the residue obtained by evaporation of the solvent under reduced pressure was purified by column chromatography on silica gel(n-hexane:ethyl acetate=10:1-->5:1) to give the title compound(53.6mg, 13.9percent) as a white crystal.1H-NMR(CDCl3): delta 7.04(1H, d, J=9.0Hz), 7.54(1H, dd, J=9.0, 2.7Hz), 7.75(2H, s), 7.86(1H, s), 8.02(1H, d, J=2.7Hz), 10.09(1H, s). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93% | With potassium carbonate; In ethyl acetate; acetonitrile; | Example 65 6-[5-CHLORO-2-(2-METHOXY-ETHOXY)-PHENYL]-N-(4-CHLORO-PHENYL)[1,3,5]TRIAZINE-2,4-DIAMINE A mixture of 5-chlorosalicylic acid (5.0 g, 29.0 mmol), potassium carbonate (10.8 g, 78.1 mmol), acetonitrile (100 ml), and 2-bromoethylmethyl ether (6.8 ml, 72.3 mmol) was heated under reflux for 20 hours. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in ethyl acetate (50 ml). The solution was washed with aqueous sodium hydroxide solution (1 M, 2*50 ml), washed with water (50 ml), dried over sodium sulfate, and concentrated under reduced pressure to provide 5-chloro-2-(2-methoxyethoxy)benzoic acid 2-methoxyethyl ester (7.83 g, 93% yield). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
89.5% | Example 161 5-Chloro-N-[5-(1,1-dimethyl)ethyl-2-methoxyphenyl]-2-hydroxybenzamide (Comopund No. 160). Using 5-chlorosalicylic acid and 5-[(1,1-dimethyl)ethyl]-2-methoxyaniline as the raw materials, the same operation as the example 16 gave the title compound. Yield: 89.5%. 1H-NMR(DMSO-d6): δ 1.28(9H, s), 3.33(3H, s), 7.01(1H, d, J=8.7Hz), 7.05(1H, d, J=9.0Hz), 7.11(1H, dd, J=8.7, 2.4Hz), 7.47(1H, dd, J=9.0, 3.0Hz), 7.99(1H, d, J=3.0Hz), 8.49(1H, d, J=2.4Hz), 10.78(1H, s), 12.03(1H, s). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
14.5% | Example 118 5-Chloro-2-hydroxy-N-[2-methyl-3-(trifluoromethyl)phenyl]benzamide (Comopund No. 118). Using 5-chlorosalicylic acid and <strong>[54396-44-0]2-methyl-3-(trifluoromethyl)aniline</strong> as the raw materials, the same operation as the example 16 gave the title compound. Yield: 14.5percent. 1H-NMR(DMSO-d6): delta 2.36(3H, d, J=1.2Hz), 7.05(1H, d, J=8.7Hz), 7.46(1H, t, J=8.1Hz), 7.50(1H, dd, J=8.7, 2.7Hz), 7.60(1H, d, J=7.2Hz), 7.99(1H, d, J=7.2Hz), 8.00(1H, d, J=2.4Hz), 10.43(1H, s), 12.08(1H, s). | |
With pyridine; phosphorus trichloride; In toluene; for 12h;Inert atmosphere; Reflux; | General procedure: The salicylic acid (1.2 equiv) was added to a mixture of toluene (0.3 M), aniline (1.0 equiv), phosphorus trichloride (1.1 equiv), and pyridine (0.05 equiv) in a Radley?s Carousel reaction tube (modified from Itai et al.20). The mixture was refluxed under nitrogen for 12 h then cooled to room temperature. Aqueous sodium bicarbonate was added dropwise to attain pH 6?7. The resultant mixture was extracted with EtOAc. The organic extracts were combined, dried (MgSO4), and concentrated under vacuum. After chromatography (1:10 EtOAc:Hex) compounds were recrystallized (EtOAc/Hex). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
89.9% | With phosphorus trichloride; In 5,5-dimethyl-1,3-cyclohexadiene; dichloromethane;Reflux; | Example 5 N-(3-tert-butylphenyl)-5-chloro-2-hydroxybenzamide (3i) Using the method described for compound 3a, 5-chlorosalicylic acid (2.04 g, 11.82 mmol) reacted with <strong>[5369-19-7]3-tert-butylaniline</strong> (1.76 g, 11.82 mmol) and 2M PCl3 in CH2Cl2 (2.336 mL, 4.73 mmol) in xylenes (30 mL). At completion of reaction, the hot xylenes solvent was decanted, cooled to room temperature, and then diluted with hexanes (30 mL). This was stored at 4° C. for 30 hours during which time an off-white crystalline solid separated. The product was recrystallized from EtOAc/hexanes to give a mixture of the title compound (89.9percent and an unidentified impurity (10.1percent). 1H NMR of the major component (400 MHz, DMSO-d6) delta 1.280 (S, 9H), 7.172 (dq, J=8.0, 0.8 Hz, 1H), 7.283 (dd, J=8.0, 0.8 Hz, 1H), 7.455 (dd, J=8.8, 2.6 Hz-, 1H), 7.560 (dd, J=8.0, 0.8 Hz, 1H), 7.679 (M, 1H), 7.982 (d, J=2.6 Hz, 1H), 10.345 (S, 1H), 11.903 (S, 1H). HPLC TR 3.095 min; m/z 303.95 [M+H]+; m/z- =301.85[M-H]-; (EM 303.10). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
10% | With pyridine; phosphorus trichloride; In toluene; for 12h;Inert atmosphere; Reflux; | General procedure: The salicylic acid (1.2 equiv) was added to a mixture of toluene (0.3 M), aniline (1.0 equiv), phosphorus trichloride (1.1 equiv), and pyridine (0.05 equiv) in a Radley?s Carousel reaction tube (modified from Itai et al.20). The mixture was refluxed under nitrogen for 12 h then cooled to room temperature. Aqueous sodium bicarbonate was added dropwise to attain pH 6?7. The resultant mixture was extracted with EtOAc. The organic extracts were combined, dried (MgSO4), and concentrated under vacuum. After chromatography (1:10 EtOAc:Hex) compounds were recrystallized (EtOAc/Hex). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In methanol; for 0.5h;Heating; | General procedure: The title salts were synthesized by the reaction of 1:1 stoichiometricmixtures of 2-amino-4-methoxy-6-methylpyrimidine(34.79 mg, 0.25 mmol) with 4-aminosalicylic acid (38.28 mg,0.25 mmol) or 5-chlorosalicylic acid (43.14 mg, 0.25 mmol) inhot methanol solution (20 ml), after warming over a water bathfor 30 min. The solutions were cooled and kept at roomtemperature.Within a few days, block-shaped brown crystals ofsalt I and colourless needle-shaped crystals of salt II wereobtained by slow evaporation at room temperature. Bothcrystals were suitable for single-crystal X-ray structure analysis |
Tags: 321-14-2 synthesis path| 321-14-2 SDS| 321-14-2 COA| 321-14-2 purity| 321-14-2 application| 321-14-2 NMR| 321-14-2 COA| 321-14-2 structure
A327508 [56961-31-0]
2-Chloro-6-hydroxybenzoic acid
Similarity: 0.95
A155142 [4068-78-4]
Methyl 5-chloro-2-hydroxybenzoate
Similarity: 0.93
A226676 [1829-32-9]
3-Chloro-2-hydroxybenzoic acid
Similarity: 0.93
A218896 [320-72-9]
3,5-Dichloro-2-hydroxybenzoic acid
Similarity: 0.91
A274340 [22717-55-1]
Methyl 4-chloro-2-hydroxybenzoate
Similarity: 0.91
A327508 [56961-31-0]
2-Chloro-6-hydroxybenzoic acid
Similarity: 0.95
A155142 [4068-78-4]
Methyl 5-chloro-2-hydroxybenzoate
Similarity: 0.93
A226676 [1829-32-9]
3-Chloro-2-hydroxybenzoic acid
Similarity: 0.93
A218896 [320-72-9]
3,5-Dichloro-2-hydroxybenzoic acid
Similarity: 0.91
A274340 [22717-55-1]
Methyl 4-chloro-2-hydroxybenzoate
Similarity: 0.91
A327508 [56961-31-0]
2-Chloro-6-hydroxybenzoic acid
Similarity: 0.95
A226676 [1829-32-9]
3-Chloro-2-hydroxybenzoic acid
Similarity: 0.93
A109198 [3438-16-2]
5-Chloro-2-methoxybenzoic acid
Similarity: 0.91
A218896 [320-72-9]
3,5-Dichloro-2-hydroxybenzoic acid
Similarity: 0.91
A125212 [53984-36-4]
3-Chloro-5-hydroxybenzoic acid
Similarity: 0.91
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL