Home Cart Sign in  
Chemical Structure| 301224-40-8 Chemical Structure| 301224-40-8

Structure of 301224-40-8

Chemical Structure| 301224-40-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 301224-40-8 ]

CAS No. :301224-40-8
Formula : C31H38Cl2N2ORu
M.W : 626.62
SMILES Code : CC(OC1=CC=CC=C1C=[Ru+2]=C2N(C3=C(C)C=C(C)C=C3C)CCN2C4=C(C)C=C(C)C=C4C)C.[Cl-].[Cl-]
MDL No. :MFCD03701614
InChI Key :ZRPFJAPZDXQHSM-UHFFFAOYSA-L
Pubchem ID :11763533

Safety of [ 301224-40-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P261-P280-P305+P351+P338

Computational Chemistry of [ 301224-40-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 37
Num. arom. heavy atoms 18
Fraction Csp3 0.35
Num. rotatable bonds 5
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 167.55
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

15.71 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.0
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

8.57
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-0.08
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

6.05
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

6.9
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

4.29

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-9.15
Solubility 0.000000439 mg/ml ; 0.0000000007 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-8.77
Solubility 0.00000105 mg/ml ; 0.0000000017 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-9.96
Solubility 0.0000000695 mg/ml ; 0.0000000001 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-4.04 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

2.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.17

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

4.35

Application In Synthesis of [ 301224-40-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 301224-40-8 ]

[ 301224-40-8 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 301224-40-8 ]
  • [ 773-76-2 ]
  • bis(κ2-(N,O)-5,7-dichloro-8-quinolinolate)-(2-isopropylbenzylidene)-(1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene)ruthenium [ No CAS ]
  • bis(κ2-(N,O)-5,7-dichloro-8-quinolinolate)-(2-isopropylbenzylidene)-(1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene)ruthenium [ No CAS ]
YieldReaction ConditionsOperation in experiment
28%; 57% With caesium carbonate; In dichloromethane; at 25℃; for 12h;Schlenk technique; Inert atmosphere; General procedure: In a Schlenk flask the corresponding starting material (1 equiv)was dissolved in degassed CH2Cl2. 5,7-Dihalide-8-hydroxyquinoline(20 equiv) and Cs2CO3 (20 equiv) were added. Thereaction mixture was stirred under an atmosphere of argon for12 h at 25 C. Insoluble components were removed by filtrationover celite. Column chromatography (silica gel) using cyclohexane/ethylacetate = 10/1 (v/v) yielded the correspondingcomplexes. The synthesis of the following Ru-based complexesbelongs to a patent application [63].
46.5 mg; 91 mg With caesium carbonate; In dichloromethane;Schlenk technique; Inert atmosphere; In a Schlenk flask, (H2IMes)Cl2Ru(CH-o-OiPrC6H4) (106 mg, 0.169 mmol, 1 eq) was dissolved in degassed CH2Cl2 (18 mL). <strong>[773-76-2]5,7-Dichloro-8-hydroxyquinoline</strong> (707 mg, 3.303 mmol, 19 eq) and Cs2CO3 (150 mg, 0.461 mmol, 16 eq) were added. The reaction mixture was stirred in a Schlenk flask under argon atmosphere overnight. (0099) The insoluble residue was filtered over celite. According to a TLC (CH/EE 5:1) two derivatives were formed. The products were separated via column chromatography (CH/EE 5:1) and fully characterized by NMR and crystal structure analysis. Yield=83% (46.5 mg 3 and 91 mg 4). (0100) 3: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 19.10 (s, 1H, Ru?CH), 8.09 (d J=4.04, 1H, CHhq), 7.95 (d J=8.56; j=1.43, 1H, CHhq), 7.68 (d J=8.43 j=1.30, 1H, CHPhq), 7.49 (s, 1H, CHhq), 7.17 (s, 1H, CHhq), 7.05 (m, 2H, CHhq), 6.56 (d J=8.04, 1H, CHhq), 6.48 (s, 2H, CHmes), 6.43 6,39 (?, 2H, CHph), 6.14 (s, 2H, CHmes), 6.06 (2H, CHhq+ph), 3.97 (5H, CH2+CHisoprop), 2.45 (s, 6H), 2.27 (s, 6H), 1.90 (s, 6H, CH31, 1?, 2, 2?, 3, 3?), 1.43 (d, 3H, CH3isoprop), 1.05 (d, 3H, CH3isoprop). (0101) 3: 13C-NMR (delta, 20 C., CDCl3, 75 MHz): 338.6 (1C, Ru?CH), 227.6 (1C, Ru-C), 162.6, 161.3, 149.7, 149.4, 149.0, 144.2, 143.2, 142.4, 142.3, 138.1 (Cq), 136.9 (Cq), 136.6 (Cq), 135.8 (Cq), 132.3 (CH), 131.7 (CH), 129.3 (CH), 129.2 (CH), 128.7, 127.7 (CH), 126.2, 125.8, 125.7, 122.2 (CH), 121.6 (CH), 121.0 (CH), 119.5 (CH), 118.9, 112.0, 109.2, 76.2 (1C, CHisoprop), 51.6 (2C, CH2-N), 23.1 (1C, CH3isoprop), 21.5 (1C, CH3isoprop), 20.8, 18.8, 18.5 (2C, CH3mes 7, 7?, 8, 8?, 9, 9?). (0102) 4: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 18.23 (bs, 1H, Ru?CH), 9.00 (d j=4.67 Hz, 1H, CHhq 1), 8.09 (d J=8.56 Hz, 1H, CHhq 3), 7.83 (d J=8.30 Hz, 1H, CHhq 3) 7.57 (s, 1H, CHhq 4 or 4), 7.12 (s, 1H, CHhq 4 or 4), 7.06 (q, 1H, CHhq 2), 6.94 (t, 1h; CHph 3 or 4), 6.59 (s, 2H, CHmes 3+3? or 5+5?), 6.39 (d, 1H, CHph 2 or 5), 6.26 (s, 2H, CHmes 3+3? or 5+5?), (d, 1H, CHph 2 or 5), (t, 1H, Chhq 2), 5.98 (t, 1H, CHph 3 or 4), 5.32 (d j=4.54 Hz, 1H, CHhq 1), 4.54 (m, 1H, CHisoprop), 3.92 (q, 4H, CH2mes), 2.57 (s, 6H), 2.04 (s, 6H), 1.91 (s, 6H, CH3mes 7, 7?, 8, 8?, 9, 9?), 1.53 (d, 3H, CH3isoprop), 1.31 (d, 3H, CH3isoprop). (0103) 13C-NMR (delta, 20 C., CDCl3, 75 MHz): Ru?C not observed, 209.5 (1C, Ru-C), 166.4 (Cq), 160.9 (Cq), 147.7 (Cq), 146.7 (Cq), 147.1 (Cq), 146.7 (Cq), 164.5 (CH), 146.5 (CH), 144.9 (Cq), 141.2 (CH), 137.1 (Cq), 137.0 (Cq), 136.7 (Cq), 136.5 (Cq), 119.3 (Cq), 125.8 (Cq), 132.7 (CH), 132.2 (CH), 129.2 (CH), 129.1 (2C, CH), 129.0 (CH), 128.6 (CH), 127.9 (CH), 126.4 (Cq), 120.7 (CH), 120.1 (CH), 119.7 (CH), 118.0 (Cq), 111.3 (Cq), 110.5 (CH), 106.4 (Cq), 68.7 (1C, CHisoprop) 51.7 (2C, CH2), 22.7, 22.3 (2C, CH3isoprop), 20.9, 18.9, 18.1 (6C, CH3mes 7, 7?, 8, 8?, 9?). (0104) Even if both of the catalysts possess two <strong>[773-76-2]5,7-dichloro-8-hydroxyquinoline</strong>s, they show different NMR patterns. The different structures were revealed by X-ray diffraction. The crystals for the X-ray diffraction measurement were obtained by slow diffusion of Et2O in a saturated solution of CH2Cl2. The two derivatives exhibit a different geometry considering the 8-quinolinolate substituents. In derivative 3, the oxygen atoms of the two quinolinolates are orientated trans to each other, while in derivative 4 these trans positions are occupied by an oxygen and a nitrogen atom of the two different quinolinolates.
 

Historical Records

Categories