Structure of 17945-79-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 17945-79-8 |
Formula : | C9H13NO |
M.W : | 151.21 |
SMILES Code : | OCCCCC1=NC=CC=C1 |
MDL No. : | MFCD12828284 |
InChI Key : | QYSOMFUUWROROT-UHFFFAOYSA-N |
Pubchem ID : | 23273466 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H227-H315-H319-H335 |
Precautionary Statements: | P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.44 |
Num. rotatable bonds | 4 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 44.79 |
TPSA ? Topological Polar Surface Area: Calculated from |
33.12 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.77 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.86 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.4 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.87 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.16 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.41 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.46 |
Solubility | 5.26 mg/ml ; 0.0348 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.14 |
Solubility | 11.0 mg/ml ; 0.0726 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.05 |
Solubility | 0.134 mg/ml ; 0.000889 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.61 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.5 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; In dichloromethane; at 20℃; for 16h;Inert atmosphere; | Under nitrogen atmosphere, to a stirred solution of 4-(2-pyridyl)-butan-1-ol (0.30 g,1.98 mmol) in dry CH2C12 (10 mL), DMAP (0.024 g, 0.19 mmol) and 2-DPC (0.12 g, 2.37mmol) were added. The reaction mixture was left at r.t. for 16 h, then diluted with CH2C12 (50 mL) and sequentially washed with sat. NH4C1 solution (15 mL), sat. NaHCO3 solution (3 x 15 mL) and brine (15 mL). The organic layer was dried over Na2SO4, filtered and concentrated to dryness giving a grey oily residue (0.51 g), as a mixture (1:1.5 ratio) of 4-(2-pyridyl)-butyl-2-pyridyl carbonate and 4-(2-pyridyl)-butyl-2-oxopyridine-1-carboxylate. The mixture of isomers was not separated and used in the next step without any further purification. R = 1.64. MS (ESI) mlz: 273 [M-H], 295 [M-Na], 311 [M-K] MS (ESI) mlz: 271 [M-H] | |
With dmap; In dichloromethane; at 20℃; for 16h;Inert atmosphere; | General procedure: Under nitrogen atmosphere, to a stirred mixture of thecorresponding alcohol 11b?am (1.0 eq.) in dry CH2Cl2 (5.0 mL), DMAP (0.1 eq.), and 2-DPC (1.2 eq.)were added. The reaction mixture was stirred at room temperature for 16 h, then diluted with CH2Cl2(20 mL) and sequentially washed with sat. NH4Cl solution (25 mL), sat. NaHCO3 solution (3 x 25 mL)and brine (25 mL). The organic layer was dried over Na2SO4, filtered and concentrated to dryness atlow pressure, as a mixture of alkyl-2-pyridyl carbonate 12b?am and alkyl-2-oxopyridine-1-carboxylate13b?am. The mixture of isomers was not separated and used in the next step without any furtherpurification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.02 g | General procedure: Under nitrogen atmosphere, to asuspension of 14-21 (1.0 eq.) in dry CH2Cl2 (2.0 mL), DIPEA (1.2 eq.) was added dropwise.Subsequently, the crude mixture containing the corresponding alkyl-2-oxopyridine-1-carboxylate (1.2eq.) in dry CH2Cl2 (4.0 mL) was added. The reaction mixture was stirred at room temperature for 16 h,diluted with CH2Cl2 (10 mL), washed with sat. NH4Cl solution (2 x 20mL), sat. NaHCO3 solution (2 x20 mL), and the organic layer dried over Na2SO4 and concentrated to dryness. Purification wasperformed either by typical silica gel flash chromatography or preparative HPLC affording the desired-lactam carbamates. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.14 g | With lithium aluminium tetrahydride; In diethyl ether; at 5 - 20℃; for 5h;Inert atmosphere; | In a nitrogen atmosphere, aluminum lithium hydride (0.90 g, 23.7 mmol) and dry ether (20 mL) were put in a 200-mL flask, and stirred at 5 C. in an iced water bath. A dry ether (10 mL) solution of the crude product of methyl 4-(2-pyridyl)butyrate (5.17 g, 28.8 mmol) was dropwise added thereto at 10 C. or lower, and stirred at the same temperature for 2 hours. Further, this was heated up to room temperature and stirred for 3 hours. A saturated aqueous Rochelle salt solution (100 mL) and ether (20 mL) were added thereto, stirred overnight, and the organic layer was separated. The aqueous layer was extracted with ether (100 mL), and the combined organic layers were washed with 20% saline water (100 mL), dried with sodium sulfate and concentrated to give a crude product (3.98 g). This was distilled under reduced pressure to give 2.14 g (2-stage yield 44.8%, purity 95.8%) of 2-pyridine-butanol. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
43.4% | 60percent sodium hydride (0.47 g, 11.8 mmol) and dry tetrahydrofuran (5 mL) were put into a 200-mL flask, and stirred in a nitrogen atmosphere. In a water bath, a dry tetrahydrofuran (5 mL) solution of 2-pyridine-butanol (1.50 g, 9.92 mmol) was dropwise added thereto at 25° C. or lower, taking 5 minutes, and then stirred at room temperature for 20 minutes. The reactor was again put in a water bath, and a dry tetrahydrofuran (5 mL) solution of benzyl chloride (1.51 g, 11.9 mmol) was dropwise added thereto at 25° C. or lower, taking 15 minutes, and stirred overnight at room temperature. Cold water (5 mL) was added to the reaction liquid for quenching, and this was extracted with ethyl acetate (30 mL). The resultant organic layer was washed with 20percent saline water (30 mL), dried with sodium sulfate and concentrated to give a crude product (2.54 g). This was purified through silica gel chromatography to give 1.04 g (yield 43.4percent, purity 98.5percent) 2-(4-benzyloxybutyl)pyridine (invention product 1). Physical Data of 2-(4-benzyloxybutyl)pyridine (0106) 1H NMR (CDCl3, 400 MHz) delta 1.65-1.73 (m, 2H), 1.79-1.90 (m, 2H), 2.78-2.83 (m, 2H), 3.50 (t, 2H, J=6.4 Hz), 4.49 (s, 2H), 7.07-7.11 (m, 1H), 7.13 (d, 1H, J=8.0 Hz), 7.24-7.30 (m, 1H), 7.32-7.36 (m, 4H), 7.57 (dt, 1H, J=2.0, 7.6 Hz), 8.50-8.53 (m, 1H). (0107) 13C NMR (CDCl3, 100 MHz) delta 26.43, 29.40, 38.08, 70.18, 72.87, 120.92, 122.73, 127.45, 127.60 (2C), 128.31 (2C), 136.24, 138.57, 149.19, 162.04. (0108) MS (EI, 70 eV) m/z 65(12), 78(6), 91(50), 92(15), 93(100), 94(10), 106 (84), 107 (17), 117 (8), 118 (8), 120 (30), 132(6), 134 (52), 135 (38), 150 (96), 151 (10). |
A140053 [213248-46-5]
1-(Pyridin-2-yl)propane-1,3-diol
Similarity: 0.83
A158492 [5223-06-3]
2-(5-Ethylpyridin-2-yl)ethanol
Similarity: 0.82