Structure of 16265-04-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Abraha, Yuel W. ; Jacobs, Francois J. F. ; Brink, Alice ; Langner, Ernst H. G. ;
Abstract: Direct mixing (de novo) and Solvent Assisted Ligand Exchange (SALE) are the main methods used for the synthesis of Mixed-Linker Zeolitic Imidazolate Frameworks (ML-ZIFs). ML-ZIFs with combined -NO2 and -Br/-Cl functionalities were prepared via both synthetic routes. Thereafter the CO2 uptake of the ML-ZIFs were compared, as well as their abilities to fixate CO2 with epoxide substrates. The de novo synthesis resulted in ML-ZIFs with SOD topologies, 60: 40 (-NO2: -Br/-Cl) functionality ratios, higher porosities, better thermal stability and higher CO2 uptake than equivalent SALE products. SALE resulted in smaller ML-ZIF crystallites, only ∼ 10% incorporation of -Br/-Cl functionalized imidazolate linkers, and phase change during activation. ML-ZIF-7Cl, obtained from direct mixing, resulted in the highest CO2 uptake (90 cm3 g-1), in line with its higher porosity. ML-ZIF-7Cl, in combination with tetrabutylammonium bromide (TBAB), showed a high catalytic activity (TOF of 446 h-1) for the fixation of CO2 with propylene oxide and was reusable for up to 4 cycles without loss in activity.
Show More >
Keywords: Zeolitic imidazolate frameworks (ZIFs) ; Solvent assisted ligand exchange (SALE) ; De Novo synthesis ; CO2 uptake ; CO2 fixation
Show More >
Purchased from AmBeed: 59061-53-9 ; 16681-56-4 ; 909531-29-9 ; 108-32-7 ; 16265-04-6 ; 2463-45-8 ; 4437-85-8
Show More >
Application of Carbonyl Chemistry in the Detection, Modification, and Control of Biomolecules
Park, Hyun Shin ;
Abstract: In chemical biology, reactive carbonyl species such as aldehydes and activated esters have been routinely utilized for modification biomolecules for various purposes such as imaging, enzyme profiling, drug delivery, and caging. This work herein presents a novel application of their chemistry to functionalize and control RNA and protein function through chemically reversible polyacylation. Also due to their reactive nature and propensity to form adducts with biomolecules and cause dysfunction, there has been continued interest in determining their concentration and composition to understand how they contribute to cancer, neurological disorders, and cardiovascular diseases. In furthering this endeavor, the second part of this work describes the development of fluorescent methods to measure and profile intracellular aldehydes. Chapter 1 describes the synthesis and RNA acylation activity of a series of minimalist azidoalkanoyl imidazole reagents, with the aim of functionalizing RNA at 2’-hydroxyl groups at stoichiometric to superstoichiometric levels. Due to their simple structure, they are prepared readily in high yields. Upon reaction with RNA, we find marked effects of small structural changes on their ability to acylate and be reductively removed. One compound in the series, a glycolic acid derivative, is shown to be highly active both in acylation of RNA and in phosphine-triggered deacylation, which enables reversible control of hybridization and folding. We also identify reagents that are ideal for long-term acylation of RNA, remaining stable even after azide reduction; this presents a novel and simple strategy for amine functionalization of RNA. Finally, an azidoacyl adduct on RNA was shown to react with a strained alkyne-containing fluorophore in a “cloak-click” strategy, suggesting a general approach to facile fluorescent labeling of RNAs. These simple azidoalkanoyl acylimidazole reagents serve as a set of molecular tools that can be employed easily for post-synthesis labeling and control of RNA irrespective of length. Chapter 2 describes RNA 2’-OH polyacylation agents with improved reversibility based on quinone methide elimination. The rapidly reversible RNA caging method was utilized to control RNA folding and function, both in vitro and in cells. Previous uncloaking chemistry made use of azide reduction and subsequent amine cyclization, requiring 2 to 4 hours for completion. Aiming to improve reversal rates and yields, we designed novel acylating reagents that utilize quinone methide (QM) elimination for reversal. The QM uncloaking/de-acylation reactions were tested with two bioorthogonally cleavable motifs, azide and vinyl ether, and their acylation and reversal efficiencies were assessed with NMR and mass spectrometry on a model RNA substrate as well as on RNAs. Among the compounds tested, the azido-QM compound A-3 displayed excellent deacylation efficiency. To test its function in caging, A-3 was successfully applied to control EGFP mRNA translation in vitro and in cells. We envision that this compound will serve as a valuable tool for biological investigation and control of RNAs. Chapter 3 discusses the potential application of chemically reversible acylating reagents to control protein function. Proteins are involved in all facets of cellular biology and have been harnessed for a wide range of technological and therapeutic purposes. To decipher their roles in complex biological systems and for additional spatiotemporal control in vitro, various caging strategies have been developed. However, simple methods applicable to native protein remain underexplored. In preliminary studies toward this goal, we examined whether NAI-N3, a chemically reversible acylating agent, could be used to control protein activity in a convenient manner. Polyacylation with NAI-N3 led to the inhibition of various proteins including trypsin, luciferase, horse radish peroxidase, and DNA polymerases. However, phosphine treatment and subsequent deacylation poorly recovered the original activity likely due to irreversible denaturation and aggregation and harsh reductive reversal conditions. Future efforts will investigate acylating reagents with enhanced reversibility such as the quinone methide probes in chapter 2 and reagents that maintain protein surface charge and with less denaturing properties. Chapter 4 describes the application of fluorogenic probes to detect intracellular aldehydic load and progress toward the development of a method to profile intracellular aldehydes. Aldehydes are formed as metabolites in multiple cellular pathways and introduced from the environment. Due to their toxicity, their cellular levels are normally tightly regulated. Because they form adducts with DNA, aldehydes have been implicated in diseases with impaired DNA repair such as Fanconi anemia. Our lab has developed quenched hydrazone (“DarkZone”) dyes that output a fluorescent response to intracellular alkyl aldehydes. To analyze the aldehydic load in hematopoietic stem cells with DarkZone dyes, spectral overlap had to be minimized with fluorescent antibodies utilized for flow cytometry. To this end, novel DarkZone probes with various esterase cleavable motifs and fluorophores, Pacific Blue and V450, were explored. With the DarkZone probes, intracellular aldehydic loads in circulating human leukocytes were measured for the first time, and changes in cellular aldehyde concentration in the physiological range in response to aldehyde or ethanol challenge were detected. Additionally, we examined whether fluorophores with α-nucleophile reactive handles can be applied to determine cellular aldehyde composition. Utilization of these tools to investigate how deactivating aldehyde dehydrogenase 2 (ALDH2) mutants affect aldehyde content and whether ALDH activating molecules could be utilized to rescue cells from the genotoxicity of aldehydes is currently underway.
Show More >
CAS No. : | 16265-04-6 |
Formula : | C3H3ClN2 |
M.W : | 102.52 |
SMILES Code : | ClC1=NC=CN1 |
MDL No. : | MFCD02179530 |
InChI Key : | OCVXSFKKWXMYPF-UHFFFAOYSA-N |
Pubchem ID : | 2773328 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
Num. heavy atoms | 6 |
Num. arom. heavy atoms | 5 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 23.6 |
TPSA ? Topological Polar Surface Area: Calculated from |
28.68 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.88 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.02 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.06 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.2 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.91 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.93 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.73 |
Solubility | 1.89 mg/ml ; 0.0184 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.21 |
Solubility | 6.29 mg/ml ; 0.0614 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.78 |
Solubility | 1.72 mg/ml ; 0.0167 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.2 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.25 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
69% | Example 1Synthesis of 2-chloroimidazole (2-cim)To a 300-mL, three-neck, round-bottom flask equipped with a magnetic stirrer and argon inlet, were added <strong>[15469-97-3]N-tritylimidazole</strong> (3.14 g, 0.01 mol) and anhydrous THF (140 mL).The stirrer was started, and the solution was cooled to -78° C. (acetone/dry ice).n-BuLi (2.5 M in hexanes, 8.0 mL, 0.02 mol) was added via syringe resulting in reddish solution.This solution was stirred for 60 min whereupon hexachloroethane (5.0 g, 0.021 mol) in THF (25 mL) was added in portions.The reaction mixture was stirred for 1 additional hour and then quenched with saturated aqueous ammonium chloride (100 mL).The cooling bath was removed, and when the reaction flask reached room temperature the contents were transferred to a 500 mL separatory funnel, and extracted with ethyl acetate (50 mL*2).The organic layer was separated, washed with water and brine, and dried over anhydrous sodium sulfate.After filtration, the solvents were evaporated under reduced pressure resulting in a slightly yellow solid.The solid was refluxed with 5percent acetic acid in methanol (75 mL) for 24 hours.Upon evaporation of the solvent, water was added to the residue.Extraction with hexanes effectively removed the triphenylmethane impurity.Evaporation of water in vacuo afforded off-white solid as pure 2-chloroimidazole (2-cim, 0.70 g, 69percent overall yield from N-triylimidazole). |
Tags: 16265-04-6 synthesis path| 16265-04-6 SDS| 16265-04-6 COA| 16265-04-6 purity| 16265-04-6 application| 16265-04-6 NMR| 16265-04-6 COA| 16265-04-6 structure
A226452 [253453-91-7]
2-Chloro-1-methyl-1H-imidazole
Similarity: 0.88
A160979 [18994-78-0]
1-(2-Chloroethyl)-1H-imidazole hydrochloride
Similarity: 0.51
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL