Home Cart Sign in  
Chemical Structure| 14544-47-9 Chemical Structure| 14544-47-9

Structure of 14544-47-9

Chemical Structure| 14544-47-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Xinbo Tong ;

Abstract: Covalent organic frameworks (COFs) are of deep interest in various applications due to their highly tunable architectures and porosities. COFs used as photocatalysts have great potential because they usually possess high surface areas for adsorption, tunable pore and surface functionalities, and various opto-electrical properties determined by the functional groups of building blocks. However, few examples of COFs have been successful in dealing with per- and polyfluoroalkyl substances (PFAS) due to the strong binding between fluorine and carbon atoms. The challenge is designing COFs that include electron-rich rings with a suitable pore size to absorb and degrade the contaminants. Herein, we demonstrate the novel synthesis of a series of COFs or amorphous porous organic polymers (APOP) with delocalized π-conjugated systems, followed by characterization and applications. First, we select a few monomers that contain electron-rich structures, such as pyrene and porphyrin groups, as predicted by band gap energy calculations. We then intentionally choose monomers with C-C triple bonds to combine and explore various solvent and reacting conditions. After the optimized conditions and reactants to form crystalline porous polymers have been found, we synthesize four different COFs and confirm their chemical structures and optical properties by characterizations. Finally, we explore the application of using these COFs as photocatalysts to absorb and photodegrade Perfluorooctanoic Acid (PFOA). Photodegradation experiment results indicate that the Porphyrin-COF has the highest efficiency for PFOA adsorption and degradation, with over 80% PFOA adsorbed and degraded within 3 hours of irradiation.

Purchased from AmBeed: ; ; ;

Dongyang Zhu ; Zhuqing Zhang ; Lawrence B. Alemany ; Yilin Li ; Njideka Nnorom ; Morgan Barnes , et al.

Abstract: Covalent organic frameworks (COFs) are crystalline, porous organic materials that are promising for applications including catalysis, energy storage, electronics, gas storage, water treatment, and drug delivery. Conventional solvothermal synthesis approaches require elevated temperatures, inert environments, and long reaction times. Herein, we show that transition-metal nitrates can catalyze the rapid synthesis of imine COFs under ambient conditions. We first tested a series of transition metals for the synthesis of a model COF and found that all transition-metal nitrates tested produced crystalline COF products even in the presence of oxygen. Fe(NO3)3·9H2O was found to produce the most crystalline product, and crystalline COFs could be produced within 10 min by optimizing the catalyst loading. Fe(NO3)3·9H2O was further tested as a catalyst for six different COF targets varying in linker lengths, substituents, and stabilities, and it effectively catalyzed the synthesis of all imine COFs tested. This catalyst was also successful in the synthesis of 2D imine COFs with different geometries, 3D COFs, and azine-linked COFs. This work demonstrates a simple, low-cost approach for the synthesis of imine COFs and will significantly lower the barrier for the development of imine COFs for applications.

Purchased from AmBeed: ;

Zhu, Dongyang ;

Abstract: Covalent organic frameworks (COFs) are an emerging class of organic, crystalline macromolecules. Due to their tunable chemistry, tailorable structure, regular pore channels and high surface areas, they have received significant attention for various applications, such as catalysis, energy storage, gas storage and separation, membrane separation and drug delivery. However, developing materials that can be used in these applications requires addressing a number of fundamental challenges in COF synthesis, activation, and transformation. In this thesis, we introduce new catalysts for the rapid synthesis of COFs under ambient conditions, novel strategies for synthesis that increase crystallinity, activation approaches that preserve the porosity even for fragile COFs, and transformation approaches that enable the conversion of linear polymers to COFs. The synthesis of crystalline and porous COFs remains a significant challenge. In Chapter 2, we demonstrate that a series of transition metal nitrates can be used to rapidly produce COFs under ambient conditions. These transition metal nitrates enabled the production of crystalline COFs within 10 minutes at room temperature, and were successfully used to synthesize a wide range of COF targets varying in linker chemistry, linker lengths, substituents, and stabilities In Chapter 3, we demonstrate novel synthetic strategies to produce highly crystalline and porous COFs. We show that in the synthesis of imine COFs, benzaldehyde modulators compete with multi-functional aldehyde monomers to slow down the COF polymerization and growth chemistry. The modulators result in an improved crystallinity of the final COF, and the amount of benzaldehyde modulator added can be optimized for yield and product crystallinity. Activation of COFs generally involves washing and drying to isolate COFs from synthesis solvents and produce dry COF powders. Activation is as important as synthesis since COFs with high crystallinity and porosity can only be produced through proper activation. However, activation processes are usually overlooked, and conventional methods can result in collapse of porous structure and loss of accessible surface areas. In Chapter 4, we present a general approach to COF activation. We demonstrate that the use of an ultralow surface tension solvent perfluorohexane (PFH) enables rapid, simple and effective activation of a range of COFs. This approach avoids the use of supercritical CO2, which is not as widely accessible as PFH. In Chapter 5, we demonstrate a novel route to the synthesis of COFs through the transformation of linear polymers using dynamic and reversible chemistries. Specifically, we demonstrate an approach to transform linear imine-linked polymers into ketone-linked COFs through a linker replacement strategy with triformylphloroglucinol (TPG). TPG first reacts through dynamic chemistry to replace linkers in the linear polymers and then undergoes irreversible tautomerism to produce ketone linkages. This strategy provides an approach to synthesizing COFs through the solution processing of linear polymers followed by transformation to the desired COF structure. Finally, this thesis proposes future research directions based on the topics introduced from Chapter 2 to Chapter 5. We aim to develop more novel catalysts for COF synthesis and broaden their generality. We propose to modify the COF surface chemistry through the introduction of functionalized modulators and design more robust COFs through molecular engineering. We also aim to transform soluble linear polymers into COFs, which might serve as a novel solution processing method for COFs. We anticipate that these investigations provide further insight into the fundamental properties and basic problems in COF areas.

Purchased from AmBeed: ;

Zhu, Dongyang ; Verduzco, Rafael ;

Abstract: Covalent organic frameworks (COFs) are organic, crystalline, highly porous materials attractive for applications such as gas storage, gas separations, catalysis, contaminant adsorption, and membrane filtration. Activation of COFs removes adsorbed solvents and impurities, but common methods for COF activation can result in the collapse of porous structure and loss of accessible surface areas. Here, we present a study of the impact of solvent surface tension on the activation process and demonstrate that activation using the ultralow surface tension solvent perfluorohexane (PFH) is simple and effective for a range of COF materials. We synthesized six different imine-based COFs through imine condensation reactions between tris(4-aminophenyl)benzene (TAPB) or 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and multifunctional di- and tri-benzaldehydes with different aromatic substituents. For each COF, we performed a solvent wash followed by vacuum drying using six solvents varying in surface tension from 11.9 to 72.8 mN m-1. Through powder X-ray diffraction (PXRD) measurements combined with nitrogen adsorption and desorption anal., we found that some COF chemistries readily lost their porosity during activation with higher surface tension solvents while others were more robust. However, all COFs could be effectively activated using PFH to produce materials with excellent crystallinity and high surface areas, comparable to those for samples activated using supercritical CO2. This work demonstrates that the solvent surface tension used during activation has a strong impact on the potential pore collapse, and activation using PFH provides a simple and effective activation method to produce COFs with excellent crystallinities and pore structures.

Keywords: COFs ; activation ; perfluorohexane ; pore collapse ; ultralow surface tension solvents

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 14544-47-9 ]

CAS No. :14544-47-9
Formula : C21H18N6
M.W : 354.41
SMILES Code : NC1=CC=C(C2=NC(C3=CC=C(C=C3)N)=NC(C4=CC=C(C=C4)N)=N2)C=C1
MDL No. :MFCD04116311
InChI Key :WHSQATVVMVBGNS-UHFFFAOYSA-N
Pubchem ID :1515256

Safety of [ 14544-47-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P280-P301+P312-P302+P352-P305+P351+P338

Computational Chemistry of [ 14544-47-9 ] Show Less

Physicochemical Properties

Num. heavy atoms 27
Num. arom. heavy atoms 24
Fraction Csp3 0.0
Num. rotatable bonds 3
Num. H-bond acceptors 3.0
Num. H-bond donors 3.0
Molar Refractivity 109.35
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

116.73 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.82
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

2.92
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

3.64
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.02
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.75
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.83

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-4.34
Solubility 0.0163 mg/ml ; 0.0000461 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-5.03
Solubility 0.00329 mg/ml ; 0.00000928 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-7.71
Solubility 0.00000688 mg/ml ; 0.0000000194 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

Yes
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

Yes
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.39 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.28
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 14544-47-9 ]

Aryls

Chemical Structure| 33630-25-0

A135347 [33630-25-0]

2-Phenylpyrimidin-4-amine

Similarity: 0.83

Chemical Structure| 7431-45-0

A362282 [7431-45-0]

2-Phenylpyrimidine

Similarity: 0.81

Chemical Structure| 30363-03-2

A103698 [30363-03-2]

2,4,6-Tris(4-bromophenyl)-1,3,5-triazine

Similarity: 0.78

Chemical Structure| 203450-08-2

A156148 [203450-08-2]

2-(4-Fluorophenyl)-4,6-diphenyl-1,3,5-triazine

Similarity: 0.78

Chemical Structure| 80984-79-8

A305884 [80984-79-8]

2-Bromo-4,6-diphenyl-1,3,5-triazine

Similarity: 0.77

Amines

Chemical Structure| 33630-25-0

A135347 [33630-25-0]

2-Phenylpyrimidin-4-amine

Similarity: 0.83

Chemical Structure| 15018-66-3

A179251 [15018-66-3]

Quinazolin-4-ylamine

Similarity: 0.83

Chemical Structure| 76644-74-1

A224920 [76644-74-1]

1H-Isoindol-3-amine hydrochloride

Similarity: 0.77

Chemical Structure| 101421-73-2

A103768 [101421-73-2]

Quinazolin-7-amine

Similarity: 0.74

Chemical Structure| 1899-48-5

A129144 [1899-48-5]

Quinazoline-2,4-diamine

Similarity: 0.74

Related Parent Nucleus of
[ 14544-47-9 ]

Triazines

Chemical Structure| 30363-03-2

A103698 [30363-03-2]

2,4,6-Tris(4-bromophenyl)-1,3,5-triazine

Similarity: 0.78

Chemical Structure| 203450-08-2

A156148 [203450-08-2]

2-(4-Fluorophenyl)-4,6-diphenyl-1,3,5-triazine

Similarity: 0.78

Chemical Structure| 80984-79-8

A305884 [80984-79-8]

2-Bromo-4,6-diphenyl-1,3,5-triazine

Similarity: 0.77

Chemical Structure| 890148-78-4

A157015 [890148-78-4]

2,4,6-Tris(3-bromophenyl)-1,3,5-triazine

Similarity: 0.77

Chemical Structure| 1073062-59-5

A287569 [1073062-59-5]

2-(3,5-Dibromophenyl)-4,6-diphenyl-1,3,5-triazine

Similarity: 0.76