Structure of 14472-14-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 14472-14-1 |
Formula : | C7H7BrO |
M.W : | 187.03 |
SMILES Code : | C1=C(C(=CC=C1O)Br)C |
MDL No. : | MFCD00079723 |
Boiling Point : | No data available |
InChI Key : | GPOQODYGMUTOQL-UHFFFAOYSA-N |
Pubchem ID : | 72857 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.14 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 41.13 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.23 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.81 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.86 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.46 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.57 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.5 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.44 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.29 |
Solubility | 0.0949 mg/ml ; 0.000507 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.94 |
Solubility | 0.213 mg/ml ; 0.00114 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.06 |
Solubility | 0.162 mg/ml ; 0.000865 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.41 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.0 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
EXAMPLE 3 The method is as in Example 1, but using 2.9 mmol of 3-methyl-4-bromophenol. After 48 hours of reaction at ambient temperature, 80percent of 3-methyl-5-bromophenol is formed. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | Example 24(e) 3-1H-Benzoimidazol-2-yl-6-(2-ethyl-4-hydroxyphenyl)-1H-indazole Example 24 (e) was prepared in a similar manner to that described for Example 24(a), except that 4-bromo-3-ethyl-phenol, prepared in 80% yield according to the procedure described by Carreno et. al., Syn. Lett., 11, 1241-42 (1997) for the synthesis of 4-bromo-3-methyl-phenol, was used instead of 4-bromo-2-methoxy-5-methyl-phenol in step (vi). 1H NMR (300 MHz, DMSO-d6) delta 13.66 (s, 1H), 13.02 (s, 1H), 9.43 (s, 1H), 8.49 (d, 1H, J=8.4 Hz), 7.72 (d, 1H, J=6.9 Hz), 7.53 (d, 1H, J=6.9 Hz), 7.44 (s, 1H), 7.18-7.25 (m, 3H), 7.06 (d, 1H, J=8.1 Hz), 6.75 (d, 1H, J=2.1 Hz), 6.66 (dd, 1H, J=8.1, 2.1 Hz), 2.50 (q, 2H, J=7.5 Hz), 1.04 (t, 3H, J=7.5 Hz). MS (ES) [m+H]/z calc'd 355, found 355; [m-H]/z calc'd 353, found 353. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium carbonate; In acetonitrile; at 80℃; | Example XVI.1 (general route) 1 -Bromo-4-cvclopropylmethoxybenzene 5.0 g (28.9 mmol) 4-bromophenol, 3.93 g (43.4 mmol) (chloromethyl)cyclopropane and 7.99 g (57.8 mmol) K2CO3 are added to 10 mL DMF and stirred at 80°C over night. Afterwards the reaction mixture is diluted with water and extracted with DCM. The organic layer is dried over MgSO4 and the solvent is removed in vacuo. CioHn BrO (M= 227.1 g/mol) EI-MS: 226/228 [M]+ Rt (HPLC): 1 .20 min (method C) The following compounds are prepared analogously to example XVI.1 For example XVI.2 and XVI.24 the reaction temperature is 120 °C. For the examples XVI.17-23 and XVI.3132ACN is used as solvent. The example XVI.30 can be prepared also by using Mitsunobu conditions (2,2- difluorocydopropylnnethanol, appropriate phenol, DIAD, TPP; THF, r.t. over night) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
91% | With potassium carbonate; In N,N-dimethyl-formamide; at 80℃; for 2h; | (A) To a mixture of 4-bromo-3-methylphenol (1 g, 5.35 mmol) and K2CO3 (1.1 g, 7.96 mmol) in DMF (10 mL) was added <strong>[263400-88-0]3-(methylsulfonyl)propyl 4-methylbenzenesulfonate</strong> (1.72 g, 5.88 mmol) and the resultant mixture was stirred at 80 C for 2 h. After cooling to rt, satd. aq. NH4Cl (10 mL) was added and the resultant solution was extracted with EtOAc (3 x 20 mL). The combined organic extracts were concentrated under reduced pressure and the residue thus obtained was purified by silica gel chromatography (0-30% ethyl acetate/petroleum ether) to afford 1-bromo-4-(3-methanesulfonylpropoxy)-2- methylbenzene (1.5 g, 91 %) as a white solid. 1H NMR (CDCl3) 7.40 (d, J = 8.7 Hz, 1H), 6.78 (d, J = 2.7 Hz, 1H), 6.59 (dd, J = 3.0, 8.7 Hz, 1H), 4.06 - 4.16 (m, 2H), 3.24(t, J =7.8 Hz, 2H), 2.95 (s, 3H), 2.29 - 2.38(m, 5H). |
91% | With potassium carbonate; In N,N-dimethyl-formamide; at 80℃; for 2h; | (A) To a mixture of 4-bromo-3-methylphenol (1 g, 5.35 mmol) and K2CO3 (1.1 g, 7.96 mmol) in DMF (10 mL) was added <strong>[263400-88-0]3-(methylsulfonyl)propyl 4-methylbenzenesulfonate</strong> (1.72 g, 5.88 mmol) and the resultant mixture was stirred at 80 C. for 2 h. After cooling to rt, satd. aq. NH4Cl (10 mL) was added and the resultant solution was extracted with EtOAc (3*20 mL). The combined organic extracts were concentrated under reduced pressure and the residue thus obtained was purified by silica gel chromatography (0-30% ethyl acetate/petroleum ether) to afford 1-bromo-4-(3-methanesulfonylpropoxy)-2-methylbenzene (1.5 g, 91%) as a white solid. 1H NMR (CDCl3) delta 7.40 (d, J=8.7 Hz, 1H), 6.78 (d, J=2.7 Hz, 1H), 6.59 (dd, J=3.0, 8.7 Hz, 1H), 4.06-4.16 (m, 2H), 3.24 (t, J=7.8 Hz, 2H), 2.95 (s, 3H), 2.29-2.38 (m, 5H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With di-tert-butyl-diazodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 50℃;Inert atmosphere; | General Procedure B: (0436) To a mixture of the alcohol (0.2 mmol) and the phenol (0.3 mmol) in dry THF (1 mL) was added a mixture of the phosphine (Ph3P, Bu3P or t-Bu3P; 0.3 mmol) and the azidodicarboxylate (DEAD, DIAD, DBAD or ADDP; 0.3 mmol), and the resultant solution was stirred under argon for 1-16 h. The mixture was then either worked up by an extractive process (ex., quenching with satd. aq. NH4Cl and extraction with EtOAc) or concentrated directly under reduced pressure and the resultant residue was purified by silica gel chromatography (EtOAc/heptanes) or EtOAc/petroleum ether to afford the desired phenolic ether. (A) 4-(4-Bromo-3-methylphenoxy)tetrahydro-2H-thiopyran 1,1-dioxide was prepared from 4-bromo-3-methylphenol and <strong>[194152-05-1]4-hydroxytetrahydro-2H-thiopyran 1,1-dioxide</strong> following General Procedure B, using DBAD and Ph3P at a reaction temperature of 50° C. overnight. 1H NMR (CDCl3) delta 7.43 (d, J=8.7 Hz, 1H), 6.84 (d, J=3.0 Hz, 1H), 6.64 (dd, J=2.7, 8.7 Hz, 1H), 4.59-4.61 (m, 1H), 3.33-3.43 (m, 2H), 2.90-2.96 (m, 2H), 2.30-2.48 (m, 7H). |
A149354 [666747-04-2]
3-Bromo-4-(hydroxymethyl)phenol
Similarity: 0.95
A149354 [666747-04-2]
3-Bromo-4-(hydroxymethyl)phenol
Similarity: 0.95