Structure of 143809-21-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 143809-21-6 |
Formula : | C10H10O4 |
M.W : | 194.18 |
SMILES Code : | O=C(C1=CC=C2OCCOC2=C1C)O |
MDL No. : | MFCD20640435 |
InChI Key : | YBPIZYYGBWSBKO-UHFFFAOYSA-N |
Pubchem ID : | 10702959 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P280-P301+P312-P302+P352-P305+P351+P338 |
Num. heavy atoms | 14 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.3 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 49.24 |
TPSA ? Topological Polar Surface Area: Calculated from |
55.76 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.67 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.53 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.46 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.97 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.95 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.52 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.26 |
Solubility | 1.07 mg/ml ; 0.00551 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.31 |
Solubility | 0.951 mg/ml ; 0.0049 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.19 |
Solubility | 1.24 mg/ml ; 0.0064 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.4 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.22 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
61% | With sodium hydroxide; sodium sulfite;palladium-carbon; In tetrahydrofuran; | SYNTHETIC EXAMPLE 9 Production of 5-methyl-1,4-benzodioxan-6-carboxylic acid In 5 ml of tetrahydrofuran was dissolved 0.8 g of 5-methyl-1,4-benzodioxan-6-carbaldehyde, then 27 ml of a 1% sodium hydroxide aqueous solution was added dropwise to the solution and further 0.5 g of a 10% palladium-carbon was added thereto, and the mixture was refluxed under heating for 1.5 days. The mixture was cooled to room temperature, 10 ml of a 10% sodium sulfite aqueous solution was added thereto and after stirring for 30 minutes, the mixture was filtered and the tetrahyctrofuran was removed under reduced pressure. The residue was adjusted to pH 3 with a 5% hydrochloric acid and extracted with diethyl ether. The diethyl ether layer was washed successively with water and saturated saline solution and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure to obtain 0.53 g of the titled 5-methyl-1,4-benzodioxan-6-carboxylic acid5-methyl-1,4-benzodioxan-6-carboxylic acid (yield: 61%). 1 H-NMR (CDCl3) delta(ppm): 2.51 (3H, S), 4.29 (4H, s), 6.76 (1H, d, J=8.6Hz), 7.62 (1H, d, J=8.6Hz), 11.98 (1H, brs) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
77% | With n-butyllithium; In tetrahydrofuran; water; | SYNTHETIC EXAMPLE 7 Production of 5-methyl-l,4-benzodioxan-6-carboxylic acid In 300 ml of dry tetrahydrofuran, was dissolved 32.0 g of 6-bromo-5-methyl-1,4-benzodioxane and after cooling the solution to -78 C., 96.7 ml of n-butyl lithium (n-hexane solution) was added dropwise over 20 minutes or more. After stirring at the same temperature for 1.5 hours, the reaction mixture was poured onto crushed dry ice and dry ice was sublimated while stirring. Water was added to the mixture and the tetrahydrofuran was removed under reduced pressure. The resulting alkaline aqueous solution was washed with methylene chloride and adjusted to pH 3 with a 5% hydrochloric acid, and the precipitated crystals were collected by filtration and dried to obtain 20.9 g of 5-methyl-1, 4-benzodioxan-6-carboxylic acid (yield: 77%). 1 H-NMR (CDCl3) delta(ppm): 2.51 (3H, s), 4.29 (4H, s), 6.76 (1H, d, J=9.9Hz), 7.62 (1H, d, J=9.9Hz), 11.98 (1H, brs). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
C. 5-Methyl-6-carboxy-1,4-benzodioxane Fresh sodium hypochlorite was prepared by treating Ca(ClO)2 (80 mmol, 11.43 g) in 50 mL of water with Na2CO3 (76 mmol, 8.05 g) and NaOH (24 mmol, 0.96 g) in 25 mL water. To this solution which resulted after warming with mixing and subsequent filtration was added solid acetophenone (example A, preceding) (20 mmol, 3.84 g). This mixture was warmed overnight at 60 C in a heating bath. The aqueous material was added to a separatory funnel and washed two times with dichloromethane. The material was then transferred to an Erlenmeyer Flask and treated dropwise with concentrated HCl until the solution reached a pH of 3. The solid was collected by filtration and washed well with water. The NMR was consistent with the proposed product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
34% | To a round bottom flask equipped with magnetic stirring, an addition funnel and a nitrogen inlet, was added benzo(1,4)dioxan-6-carboxylic acid (18.00 g, 99.91 mmol) and 1,2-dimethoxyethane (667 mL). This mixture was cooled to -75 C. in a dry ice-acetone bath. To this was added 1.3 M sec-butyl lithium in cyclohexane (230.6 mL, 299.7 mmol) over 1 hour, maintaining reaction temperature below -60 C. The reaction was removed from the cooling bath, allowed to warm to -20 C., and subsequently stirred at -20 C. for 45 min. The reaction was cooled to -50 C., and iodomethane (15.6 mL, 249.8 mmol) was added. The reaction was again removed from the cooling bath, allowed to warm to -20 C., and stirred at this temperature for 45 min. All cooling was removed and the reaction stirred at room temperature for 16 hours. The reaction was quenched by addition of a few mls of 1N HCl (aq) and the solvent removed by evaporation. The residue was made substantially acidic by the addition of aqueous 1N HCl. The resultant precipitate was filtered and washed with water to give a light brown solid, 5-methyl-benzo(1,4)dioxan-6-carboxylic acid, (6.60 g, 33.9 mmol) in 34% yield. 1H-NMR (300 MHz, CDCl3) delta (ppm): 7.62 (d, 1H), 6.8 (d, 1H), 4.30 (br s, 4H), 2.52 (s, 3H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With caesium carbonate; In dichloromethane; at 20℃; for 1h; | To a solution of <strong>[143809-21-6]5-methyl-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxylic acid</strong> (2.000 g, 9.78 mmol) in anh. DMF (20 mL) at RT are added cesium carbonate (6.376 g, 19.60 mmol) and iodomethane (1.23 mL, 19.60 mmol) and the mixture is stirred at RT for lh. Water and Et20 are added and the layers are separated. Theaqueous layer is extracted twice with Et20 and the combined organic layers are washed with brine, dried over anh. Mg504, filtered and concentrated under reduced pressure. Purification by FC (from heptane to heptane/EtOAc = 1/1) affords methyl 5-methyl-2,3-dihydrobenzo[b][1 ,4]dioxine-6-carboxylate as a colorless solid (2.054 g, quantitative). LC-MS B: tR = 0.89 mm; [M+H] = 209.20. |