Structure of 1137-99-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Landscape profiling of PET depolymerases using a natural sequence cluster framework
Seo, Hogyun ; Hong, Hwaseok ; Park, Jiyoung ; Lee, Seul Hoo ; Ki, Dongwoo ; Ryu, Aejin , et al.
Abstract: Enzymes capable of breaking down polymers have been identified from natural sources and developed for industrial use in plastic recycling. However, there are many potential starting points for enzyme optimization that remain unexplored. We generated a landscape of 170 lineages of 1894 polyethylene terephthalate depolymerase (PETase) candidates and performed profiling using sampling approaches with features associated with PET-degrading capabilities. We identified three promising yet unexplored PETase lineages and two potent PETases, Mipa-P and Kubu-P. An engineered variant of Kubu-P outperformed benchmarks in terms of PET depolymerization in harsh environments, such as those with high substrate load and ethylene glycol as the solvent.
Show More >
Photodegradation of Pet Plastics Produces Persistent Compounds that Accumulate in Sediments
Hwang, Eonjin ; Ahmad, Raees ; Shafique, Imran ; Shim, Woon Joon ; Son, Seungwoo ; Kim, Sunghwan
Abstract: The extensive global use of polyethylene terephthalate (PET) has led to increased plastic pollution in marine environments, posing significant ecological and health risks due to photodegradation. In this study, PET photodegradation was simulated under controlled marine-like conditions. Utilizing ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we identified 17 degradation products, five of which were confirmed using authentic standards. Laboratory-based simulations indicated that the global annual release of these compounds could range from 1 to 5.5 tons, suggesting potential environmental accumulation. To verify this, targeted environmental analyses were conducted, detecting PET-derived degradation products in marine sediments collected from Ganggu Port, South Korea. These results underscore the environmental risks associated with PET photodegradation and emphasize the urgent need for effective mitigation strategies.
Show More >
Keywords: Microplastics ; Polyethylene terephthalate ; Photodegradation ; Toxicity Assessment ; Marine pollution
Show More >
Osei, Dacosta ; Gurrala, Lakshmiprasad ; Sheldon, Aria ; Mayuga, Jackson ; Lincoln, Clarissa ; Rorrer, Nicholas A. , et al.
Abstract: The development of an efficient and environmentally sustainable chem. hydrolysis process for recycling waste plastics, based on green chem. principles, is a key challenge. In this work, we investigated the role of subcritical CO2 on the hydrolysis of polyethylene terephthalate (PET) into terephthalic acid (TPA) at 180-200 °C for 10-100 min. The addition of CO2 into the reaction mixture led to the in situ formation of carbonic acid that helps to catalyze PET hydrolysis relative to hot compressed H2O (i.e. N2-H2O). The highest TPA yield of 85.0 ± 1.3% was obtained at 200 °C, PET loading of 2.5 g PET in 20 mL H2O for 100 min, and 208 psi of initial CO2 pressure. In addition, the subcritical CO2-H2O system demonstrated high selectivity toward hydrolyzing PET in a mixture with polyethylene (PE) at 200 °C for 100 min, thus providing "molecular sorting" capabilities to the recycling process. The robustness of the process was also demonstrated by the ability to hydrolyze both colored Canada Dry and transparent Pure Life waste PET bottles into high yields of TPA (>86%) at 200 °C. In addition, subcritical CO2-H2O hydrolysis of colored PET bottles resulted in a white TPA product similar to that generated from transparent PET bottles. Overall, this work shows that, under optimized reaction conditions, subcritical CO2 can provide acid tunability to the reaction medium to favor waste PET hydrolysis for subsequent recycling.
Show More >
Lakshmiprasad Gurrala ; Rafi Anowar ; Ana Rita C. Morais ;
Abstract: Enzymatic hydrolysis of semicrystalline poly(ethylene terephthalate) (PET) is hindered by the hydrophobic nature and crystallinity of the substrate, and it highly depends on the available interfacial area between substrate and aqueous phase. While most studies leverage particle size reduction to increase interfacial area, this study investigates the use of supercritical CO2 (scCO2) to increase internal surface area in PET, and its impact on the enzymatic hydrolysis yields. Our work shows that scCO2 pretreatment of semicrystalline PET resulted in up to 2-fold higher terephthalic acid (TPA) yield relative to the untreated counterpart using Humicola insolens cutinase (HiC) enzyme. There is a positive correlation between the total pore surface area in the scCO2-pretreated PET samples and the final TPA yield. In addition, preliminary kinetic studies revealed faster initial production of TPA for scCO2-treated PET relative to untreated PET. ScCO2-treated PET samples showed no significant changes in the crystalline content and thermal properties. However, NMR data indicated that scCO2-treated PET has a slightly higher apparent number-average molecular weight (Mn) relative to that of untreated PET. Overall, scCO2 pretreatment led to increased semicrystalline PET susceptibility to HiC enzyme action, resulting in increased TPA yields.
Show More >
Keywords: biocatalysis ; terephthalic acid ; CO2 ; porosity ; cutinase ; interfacial ; sustainability ; plastic recycling/upcycling
Show More >
Hong, Hwaseok ; Ki, Dongwoo ; Seo, Hogyun ; Park, Jiyoung ; Jang, Jaewon ; Kim, Kyung-Jin
Abstract: Excessive polyethylene terephthalate (PET) waste causes a variety of problems. Extensive research focused on the development of superior PET hydrolases for PET biorecycling has been conducted. However, template enzymes employed in enzyme engineering mainly focused on IsPETase and leaf-branch compost cutinase, which exhibit mesophilic and thermophilic hydrolytic properties, respectively. Herein, we report a PET hydrolase from Cryptosporangium aurantiacum (CaPETase) that exhibits high thermostability and remarkable PET degradation activity at ambient temperatures. We uncover the crystal structure of CaPETase, which displays a distinct backbone conformation at the active site and residues forming the substrate binding cleft, compared with other PET hydrolases. We further develop a CaPETaseM9 variant that exhibits robust thermostability with a Tm of 83.2 °C and 41.7-fold enhanced PET hydrolytic activity at 60 °C compared with CaPETaseWT. CaPETaseM9 almost completely decompose both transparent and colored post-consumer PET powder at 55 °C within half a day in a pH-stat bioreactor.
Show More >
CAS No. : | 1137-99-1 |
Formula : | C10H10O5 |
M.W : | 210.18 |
SMILES Code : | O=C(O)C1=CC=C(C(OCCO)=O)C=C1 |
MDL No. : | MFCD20259688 |
InChI Key : | BCBHDSLDGBIFIX-UHFFFAOYSA-N |
Pubchem ID : | 174073 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.2 |
Num. rotatable bonds | 5 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 50.65 |
TPSA ? Topological Polar Surface Area: Calculated from |
83.83 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.05 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.65 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.53 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.99 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.88 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.82 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.52 |
Solubility | 6.37 mg/ml ; 0.0303 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.99 |
Solubility | 2.17 mg/ml ; 0.0103 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.7 |
Solubility | 4.17 mg/ml ; 0.0199 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.12 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.66 |