Home Cart Sign in  
Chemical Structure| 1116-98-9 Chemical Structure| 1116-98-9

Structure of 1116-98-9

Chemical Structure| 1116-98-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 1116-98-9 ]

CAS No. :1116-98-9
Formula : C7H11NO2
M.W : 141.17
SMILES Code : O=C(OC(C)(C)C)CC#N
MDL No. :MFCD00001938
InChI Key :BFNYNEMRWHFIMR-UHFFFAOYSA-N
Pubchem ID :70693

Safety of [ 1116-98-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P261-P280-P305+P351+P338

Computational Chemistry of [ 1116-98-9 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 0
Fraction Csp3 0.71
Num. rotatable bonds 3
Num. H-bond acceptors 3.0
Num. H-bond donors 0.0
Molar Refractivity 36.84
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

50.09 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.71
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.99
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.24
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.64
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.78
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.07

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.14
Solubility 10.2 mg/ml ; 0.0723 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.63
Solubility 3.31 mg/ml ; 0.0234 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.24
Solubility 8.05 mg/ml ; 0.057 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.46 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.65

Application In Synthesis of [ 1116-98-9 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1116-98-9 ]

[ 1116-98-9 ] Synthesis Path-Downstream   1~12

  • 2
  • [ 24686-78-0 ]
  • [ 1116-98-9 ]
  • tert-butyl 2-amino-6-benzoyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate [ No CAS ]
  • 3
  • [ 1116-98-9 ]
  • [ 34662-29-8 ]
  • tert-butyl (+/-)-cyano-(4-cyano-2-nitrophenyl)acetate [ No CAS ]
YieldReaction ConditionsOperation in experiment
With pyridine; potassium tert-butylate; at 80℃; for 4h; 18.4 g of potassium tert-butoxide was dissolved in 150 ml of pyridine, to which were added 17 ml of tert-cyanoacetate and 15.0 g of <strong>[34662-29-8]1-chloro-5-cyano-2-nitrobenzene</strong> at room temperature, and stirred at 80C for 4 hours. The solvent was evaporated away under reduced pressure, 200 ml of water was added to the residue, and this was washed with 300 ml of toluene. 120 ml of concentrated hydrochloric acid was added to the aqueous layer, and then extracted with 300 ml of ethyl acetate. The organic layer was washed with saturated saline, and then dried with anhydrous magnesium sulfate, and the solvent was evaporated away under reduced pressure to obtain 22.9 g of a dark red oil of crude tert-butyl (+/-)-cyano-(4-cyano-2-nitrophenyl)acetate. Not further purified, this was used in the next reaction. 22.6 g of the crude tert-butyl (+/-)-cyano-(4-cyano-2-nitrophenyl)acetate was dissolved in 200 ml of acetic acid, and heated up to 100C. 13.2 g of reduced iron was added to it, and stirred at 100C for 1.5 hours. This was cooled to room temperature, the insoluble matter was filtered away, and the solvent was evaporated away under reduced pressure. 300 ml of ethyl acetate and 300 ml of 1 M hydrochloric acid were added to the residue, and the reaction liquid was filtered through Celite. The filtrate was extracted with ethyl acetate, and the organic layer was washed with 1 M hydrochloric acid and saturated saline, and dried with anhydrous magnesium sulfate. The solvent was evaporated away under reduced pressure, and the residue was subjected to silica gel column chromatography for elution with ethyl acetate/n-hexane (3/7, v/v) to obtain 7.94 g of a dark brown foam substance of the entitled compound. FAB-MS m/z:258(M++1)
  • 4
  • [ 287193-07-1 ]
  • [ 1116-98-9 ]
  • [ 330192-64-8 ]
  • [ 330192-65-9 ]
YieldReaction ConditionsOperation in experiment
With morpholine; sulfur; In ethanol; at 50℃; for 18h; To a solution of 4-oxo-tetrahydro-2H-pyran-2-carboxylic acid ethyl (0.6 g, 3.5 mmol) in absolute ethanol (6 ml) was added sulfur (0.12 g, 3.85 mmol) and tert-butyl cyanoacetate (0.64 g, 4.55 mmol). The solution was stirred under nitrogen in a 50 C oil bath and morpholin (0.61 ml, 7.0 mmol) was added. The reaction was stirred for 18 hours and then cooled to ambient temperature and excess sulfur removed by filtration. The filtrate was concentrated in vacuo and reconstituted in ethyl acetate (50 ml). The organic phase was washed with brine (2 x 10 ml), dried (Na2SO4), filtered, and the solvent evaporated in vacuo . The residue was purified by silica gel chromatography using a gradient of ethyl acetate/hexane (20 to 25 % gradient) as eluent. Pure fraction of the two isomers were collected and the solvent evaporatedin vacuo which afforded 0.47 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester 5-ethyl ester (A) and 0.3 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 3-tert-butyl ester 7-ethyl ester (B) in 62 % combined yield. (A)1H-NMR (300 MHz, CDCl3) delta 5.96 (bs, 2H), 4.77-4.61 (m, 2H), 4.32-4.18 (m, 3H), 3.19-3.12 (m, 1H), 2.90-2.80 (m, 1H), 1.52 (s, 9H), 1.29 (t, 3H, J = 7 Hz).(B)1H-NMR (300 MHz, CDCl3) delta 5.10 (s, 1H), 4.28-4.13 (m, 3H), 3.98-3.91 (m, 1H), 2.82-2.76 (m, 2H), 1.51 (s, 9H), 1.31 (t, 3H, J = 7 Hz).
With morpholine; sulphur; In ethanol; at 50℃; for 18h; To a solution of 4-oxo-tetrahydro-2H-pyran-2-carboxylic acid ethyl (0.6 g, 3.5 mmol) in absolute ethanol (6 ml) was added sulfur (0.12 g, 3.85 mmol) and tert-butyl cyanoacetate (0.64 g, 4.55 mmol). The solution was stirred under nitrogen in a 50 C. oil bath and morpholin (0.61 ml, 7.0 mmol) was added. The reaction was stirred for 18 hours and then cooled to ambient temperature and excess sulfur removed by filtration. The filtrate was concentrated in vacuo and reconstituted in ethyl acetate (50 ml). The organic phase was washed with brine (2*10 ml), dried (Na2SO4), filtered, and the solvent evaporated in vacuo. The residue was purified by silica gel chromatography using a gradient of ethyl acetate/hexane (20 to 25% gradient) as eluent. Pure fraction of the two isomers were collected and the solvent evaporated in vacuo which afforded 0.47 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester 5-ethyl ester (A) and 0.3 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 3-tert-butyl ester 7-ethyl ester (B) in 62% combined yield. (A)1H-NMR (300 MHz, CDCl3) delta 5.96 (bs, 2H), 4.77-4.61 (m, 2H), 4.32-4.18 (m, 3H), 3.19-3.12 (m, 1H), 2.90-2.80 (m, 1H), 1.52 (s, 9H), 1.29 (t, 3H, J=7 Hz).(B)1H-NMR (300 MHz, CDCl3) delta 5.10 (s, 1H), 4.28-4.13 (m, 3H), 3.98-3.91 (m, 1H), 2.82-2.76 (m, 2H), 1.51 (s, 9H), 1.31 (t, 3H, J=7 Hz).
With morpholine; sulfur; In ethanol; at 50℃; for 18h; Example 30 2-(Oxalyl-amino)-5-phenylcarbamoyl-4,7-dihydro-5H-thieno[2,3-c]pyran-3 carboxylic acid; A solution of glyoxylic acid ethyl ester, polymer form (2.02 g, 8.9 mmol) and (3-methoxy-1-methylene-allyloxy)-trimethyl-silane (1.9 ml, 8.9 mmol, Danishefsky's diene) in benzene (12 ml) was placed under nitrogen. Zinc chloride (0.5N in tetrahydrofuran, 8.9 ml, 4.45 mmol) was added and the reaction stirred at ambient temperature for 72 h. The mixture was concentrated in vacuo, diluted with ethyl acetate (100 ml) and washed with 1 N hydrochloric acid (20 ml), saturated sodium bicarbonate (20 ml), and brine (20 ml). The organic layer was dried (Na2SO4), filtered, and the solvent evaporated in vacuo. The residue was purified by silica gel chromatography using a mixture of ethyl acetate/hexane (1:2) as eluant. Pure fractions were collected and the solvent evaporated in vacuo which afforded 1.2 g (75%) of 4-oxo-3,4-dihydro-2H-pyran-2-carboxylic acid ethyl ester as an oil.1H NMR (400 MHz, CDCl3) delta 7.40 (d, J=6, 1H), 5.48 (d, J=6, 1H), 5.01 (t, J=8, 1H), 4.28 (q, J=7, 2H), 2.85 (d, J=8, 2H), 1.29 (t, J=7, 3H).To a solution of the above of 4-oxo-3,4-dihydro-2H-pyran-2-carboxylic acid ethyl ester (1.0 g, 5.9 mmol) in ethyl acetate (12 ml) was added 10% palladium on activated carbon (0.15 g). The reaction was shaken on a Parr hydrogenator under a hydrogen atmosphere (30 psi) for 1.5 h. The mixture was filtered through celite and concentrated in vacuo. The residue was purified by silica gel chromatography sing diethyl ether as eluant. Pure fractions were collected and the solvent evaporated in vacuo which affording 0.6 g (60%) of 4-oxo-tetrahydro-2H-pyran-2-carboxylic acid ethyl as an oil.1H NMR (300 MHz, CDCl3) delta 4.41-4.35 (m, 1H), 4.26 (q, J=7, 2H), 3.81-3.70 (m, 1H), 2.73-2.58 (m, 3H), 2.44-2.36 (m, 1H), 1.29 (t, J=7, 3H).To a solution of 4-oxo-tetrahydro-2H-pyran-2-carboxylic acid ethyl (0.6 g, 3.5 mmol) in absolute ethanol (6 ml) was added sulfur (0.12 g, 3.85 mmol) and tert-butyl cyanoacetate (0.64 g, 4.55 mmol). The solution was stirred under nitrogen in a 50 C. oil bath and morpholin (0.61 ml, 7.0 mmol) was added. The reaction was stirred for 18 h. and then cooled to ambient temperature and excess sulfur removed by filtration. The filtrate was concentrated in vacuo and reconstituted in ethyl acetate (50 ml). The organic phase was washed with brine (2×10 ml), dried (Na2SO4), filtered, and the solvent evaporated in vacuo. The residue was purified by silica gel chromatography using a gradient of ethyl acetate/hexane (20 to 25% gradient) as eluant. Pure fraction of the two isomers were collected and the solvent evaporated in vacuo which afforded 0.47 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester 5-ethyl ester (A) and 0.3 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 3-tert-butyl ester 7-ethyl ester (B) in 62% combined yield.(A)1H NMR (300 MHz, CDCl3) delta 5.96 (bs, 2H), 4.77-4.61 (m, 2H), 4.32-4.18 (m, 3H), 3.19-3.12 (m, 1H), 2.90-2.80 (m, 1H), 1.52 (s, 9H), 1.29 (t, J=7, 3H).APCI-MS: [M+H]+=272.4 (loss of t-butyl)(B)1H NMR (300 MHz, CDCl3) delta5.10 (s, 1H), 4.28-4.13 (m, 3H), 3.98-3.91 (m, 1H), 2.82-2.76 (m, 2H), 1.51 (s, 9H), 1.31 (t, J=7, 3H).APCI-MS: [M+H]+=272.4 (loss of t-butyl)The above 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester 5-ethyl ester (275 mg, 0.84 mmol) was dissolved in a mixture of ethanol (4 ml) and tetrahydrofuran (1 ml). Sodium hydroxide (1N, 1.6 ml, 1.68 mmol) was added and the reaction stirred at ambient temperature for 5 h. after which TLC analysis indicated that the reaction was complete. The reaction was monitored with a pH meter and neutralized with 1N hydrochloric acid until pH=6.9. The solution was concentrated in vacuo to give 2-amino-4+/-7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester as a solid. Sodium chloride remained as an impurity.1H NMR (300 MHz, CD3OD) delta 4.67-4.54 (m, 2H), 4.00-3.95 (m, 1H), 3.20-3.12 (m, 1H), 2.74-2.63 (m, 1H), 1.54 (s, 9H).APCI-MS: [M+H]+=300.0To a solution of the above 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester (94 mg, 0.31 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (72 mg, 0.37 mmol) in distilled dichloromethane (4 ml) under nitrogen was added aniline (32 mul, 0.34 mmol) followed by 2,6-lutidine (0.11 ml, 0.93 mmol). The reaction was stirred for 72 h., concentrated in vacuo and reconstituted in ethyl acetate (30 ml). The organic layer was washed with 1% hydrochloric acid (10 ml), saturated sodium bicarbonate (10 ml), brine (10 ml), dried (Na2SO4), filtered, and the solvent evaporated in vacuo to give 51 mg (45%) of 2-amino-5-phenylcarbamoyl-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid tert-butyl ester as a solid.1H NMR (400 MHz, CDCl3) delta 8.40 (s, 1H), 7.60 (d, 1H, J=7), 7.49 (d, 1H, =8), 7.34 (t, 1H, J=8), 7.32 (t, 1H, J=8), 7.13 (t, 1H, J=7)...
  • 5
  • [ 1116-98-9 ]
  • [ 60211-57-6 ]
  • [ 1116021-76-1 ]
  • 6
  • [ 99368-67-9 ]
  • [ 1116-98-9 ]
  • tert-butyl 2-cyano-2-(5-nitro-3-(trifluoromethyl)pyridin-2-yl)acetate [ No CAS ]
YieldReaction ConditionsOperation in experiment
98% With potassium carbonate; In tetrahydrofuran; at 50℃; for 10.0h; To a solution of tert-butyl 2-cyanoacetate (523 mg, 3.71 mmol) in THF (15 mL) was added K2CO3 (854 mg, 6.18 mmol). Then <strong>[99368-67-9]2-chloro-5-nitro-3-(trifluoromethyl)pyridine</strong> (700 mg, 3.09 mmol) was added into the mixture and the mixture was at 50° C. for 10 h. Then the solution was concentrated and distributed between EA and saturated NaHCO3 solution. The combined organic extract was washed with brine, dried over MgSO4, filtered and concentrated. The crude material was purified by preparative TLC (DCM/MeOH=20:1, Rf=0.4) to yield a light yellow solid of tert-butyl 2-cyano-2-(5-nitro-3-(trifluoromethyl)pyridin-2-yl)acetate (1 g, 3.02 mmol, 98.0percent yield): 1H NMR (400 MHz, CD3OD) delta 8.99 (d, J=2.43 Hz, 1H), 8.36 (d, J=2.43 Hz, 1H), 3.35 (s, 1H), 1.49 (d, J=1.54 Hz, 9H); ES-LCMS m/z 276 (M-55).
98% With potassium carbonate; In tetrahydrofuran; at 50℃; for 10.0h; To a solution of tert-butyl 2-cyanoacetate (523 mg, 3.71 mmol) in THF (15 mL) was added K2CO3 (854 mg, 6.18 mmol). Then <strong>[99368-67-9]2-chloro-5-nitro-3-(trifluoromethyl)pyridine</strong> (700 mg, 3.09 mmol) was added into the mixture and the mixture was at 50 °C for 10 h. Then the solution was concentrated and distributed between EA and saturated NaHC03 solution. The combined organic extract was washed with brine, dried over MgSO/i, filtered and concentrated. The crude material was purified by preparative TLC (DCM/MeOH = 20: 1, Rf = 0.4) to yield a light yellow solid of tert-butyl 2-cyano-2-(5-nitro-3-(trifluoromethyl)pyridin-2-yl)acetate (1 g, 3.02 mmol, 98.0percent yield): lH NMR (400 MHz, CD3OD) delta 8.99 (d, J = 2.43 Hz, 1H), 8.36 (d, J = 2.43 Hz, 1H), 3.35 (s, 1H), 1.49 (d, J = 1.54 Hz, 9H); ES-LCMS m/z 276 (M-55).
  • 7
  • [ 1116-98-9 ]
  • [ 1142197-14-5 ]
  • tert-butyl cyano(5-methoxypyridin-2-yl)acetate [ No CAS ]
  • 8
  • [ 1116-98-9 ]
  • [ 1206972-45-3 ]
  • tert-butyl cyano[5-(trifluoromethoxy)pyridin-2-yl]acetate [ No CAS ]
YieldReaction ConditionsOperation in experiment
24% With tris-(dibenzylideneacetone)dipalladium(0); 2,8,9-tris(2-methylpropyl)-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane; In 1,4-dioxane; at 90℃; for 18h;Inert atmosphere; Preparation 201tert-butyl cyano[5-(trifluoromethoxy) pyridin-2-yllacetate To a solution of <strong>[1206972-45-3]2-chloro-5-(trifluoromethoxy)pyridine</strong> (94 mg, 0.44 mmol) in dioxane (1 mL) was added tris(dibenzylideneacetone)dipalladium (0) (8.20 mg, 0.009 mmol). 2,8,9-tris(2- methylpropyl)-2,5,8,9-tetraaza-1 -phosphabicyclo[3.3.3]undecane (12 mg, 13 uL, 0.036 mmol) followed by tert-butylcyanoacetate (70 uL, 0.488 mmol) were added and the reaction degassedwith nitrogen before heating to 9000 for 18 hours. The reaction was cooled, concentrated in vacuo and diluted with DCM. The solution was washed with water, dried over sodium sulphate and concentrated in vacuo. The residue was purified using silica gel column chromatography eluting with 0-40% EtOAc in heptanes to afford the title compound (32 mg, 24%).MS mlz 301 [M-H]
  • 9
  • [ 1120-95-2 ]
  • [ 1116-98-9 ]
  • tert-butyl 2-cyano-2-(pyridazin-3-yl)acetate [ No CAS ]
YieldReaction ConditionsOperation in experiment
600 mg With potassium carbonate; In 1-methyl-pyrrolidin-2-one; at 80℃; for 3h; To a solution of 3-chioropyridazine (0.5 g, 4.38 mmoi) in NMP (2.5 mL) was added potassium carbonate (1.8 g, 13.15 mmoi). Then lerl-Butyi 2?cyanoacetate (0.88 mL, 6.14 mmol) was added. The yellow suspension was warmed up to 80 °C and stirred 3 hours at 80 °C. The brown suspension was cooled down to room temperature. Then it was added to water (10 mL). The brown solution was acidified with HCI (gas evolution, strong foaming), There was a precipitation. The suspension was filtrated and the filter cake was washed with water. The filter cake was dissolved in ethyl acetate, dried with Na2SO4. filtrated and the organic phase evaporated to yield 600 mg of desired product as a yellow oil. ?H-NMR (400 MHz, CDC13) (ppm): 14.3 (bs, I H), 7.68 (dd, 1 H), 7.35 (d, I H), 1.55 (s, 9H). MS [MI{] calcd for C,0H,,N302 206.1, found 206.1;
  • 10
  • [ 1116-98-9 ]
  • [ 128376-65-8 ]
  • tert-butyl (E)-2-cyano-3-[4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phenyl]acrylate [ No CAS ]
  • 11
  • [ 1116-98-9 ]
  • [ 128376-65-8 ]
  • tert-butyl 2-cyano-3-(2,3,5,6-tetrafluoro-4-methoxyphenyl)-3-[4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phenyl]propanoate [ No CAS ]
  • 12
  • [ 1116-98-9 ]
  • [ 19955-99-8 ]
  • tert-butyl (E)-(3-vinylbenzylidene)cyanoacetate [ No CAS ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 1116-98-9 ]

Aliphatic Chain Hydrocarbons

Chemical Structure| 52688-08-1

A192125 [52688-08-1]

Octan-2-yl 2-cyanoacetate

Similarity: 0.82

Chemical Structure| 1572-99-2

A390739 [1572-99-2]

Ethyl 2-cyanopropanoate

Similarity: 0.81

Chemical Structure| 105-34-0

A270018 [105-34-0]

Methyl 2-cyanoacetate

Similarity: 0.79

Chemical Structure| 15666-97-4

A168263 [15666-97-4]

Octyl 2-cyanoacetate

Similarity: 0.78

Chemical Structure| 72291-30-6

A109965 [72291-30-6]

Methyl 2-cyano-2-methylpropanoate

Similarity: 0.73

Esters

Chemical Structure| 52688-08-1

A192125 [52688-08-1]

Octan-2-yl 2-cyanoacetate

Similarity: 0.82

Chemical Structure| 1572-99-2

A390739 [1572-99-2]

Ethyl 2-cyanopropanoate

Similarity: 0.81

Chemical Structure| 105-34-0

A270018 [105-34-0]

Methyl 2-cyanoacetate

Similarity: 0.79

Chemical Structure| 15666-97-4

A168263 [15666-97-4]

Octyl 2-cyanoacetate

Similarity: 0.78

Chemical Structure| 72291-30-6

A109965 [72291-30-6]

Methyl 2-cyano-2-methylpropanoate

Similarity: 0.73

Nitriles

Chemical Structure| 52688-08-1

A192125 [52688-08-1]

Octan-2-yl 2-cyanoacetate

Similarity: 0.82

Chemical Structure| 1572-99-2

A390739 [1572-99-2]

Ethyl 2-cyanopropanoate

Similarity: 0.81

Chemical Structure| 105-34-0

A270018 [105-34-0]

Methyl 2-cyanoacetate

Similarity: 0.79

Chemical Structure| 15666-97-4

A168263 [15666-97-4]

Octyl 2-cyanoacetate

Similarity: 0.78

Chemical Structure| 72291-30-6

A109965 [72291-30-6]

Methyl 2-cyano-2-methylpropanoate

Similarity: 0.73