Pham, Hoai TB; Fang, Xiaoyu; Choi, Ji Yong; Huang, Shaofeng; Park, Jihye

DOI:

Abstract

Integrating metallic charge transport with high porosity in a single material can unlock significant advancements in energy storage, electrocatalysis, and chemiresistive sensing. However, these properties rarely coexist due to the conflicting need for a high charge carrier density and the presence of voids. Herein, we report a new macrocyclic ligand, 2,3,8,9,14,15-hexaaminotribenzocyclyne (HATC) and its electrically conductive metal-organic framework (EC-MOF), coordinated with nickel nodes to render Ni-HATC as nanoporous synthetic metal. HATC provides intrinsic pockets for extra porosity, while its six amino and three alkyne groups significantly enhance electron density for realizing metallic behaviors in Ni-HATC. Consequently, Ni-HATC achieves exceptional conductivities of 20 S/cm in thin films and 3 S/cm in bulk, with a high surface area of 1000 m2 /g. Our findings showcase a unique material combining metallic charge transport and high porosity, opening new possibilities for future synthetically nanoporous metallic materials.

Purchased from AmBeed