Home Cart Sign in  
Chemical Structure| 94744-50-0 Chemical Structure| 94744-50-0
Chemical Structure| 94744-50-0

Fmoc-Aib-OH

CAS No.: 94744-50-0

Fmoc-Aib-OH is a protected aminoisobutyric acid derivative with the amino group protected by 9-fluorenylmethoxycarbonyl (Fmoc), suitable for peptide synthesis.

4.5 *For Research Use Only !

Cat. No.: A142078 Purity: 98%

Change View

Size Price

US Stock

Global Stock

In Stock
5g łÇʶÊÊ Inquiry Inquiry
10g łÇͶÊÊ Inquiry Inquiry
25g łËʶÊÊ Inquiry Inquiry
100g łòÿ¶ÊÊ Inquiry Inquiry
500g ł§ËʶÊÊ Inquiry Inquiry
1kg łÿóʶÊÊ Inquiry Inquiry

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 5g

    łÇʶÊÊ

  • 10g

    łÇͶÊÊ

  • 25g

    łËʶÊÊ

  • 100g

    łòÿ¶ÊÊ

  • 500g

    ł§ËʶÊÊ

  • 1kg

    łÿóʶÊÊ

In Stock

- +

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Alternative Products

Product Details of Fmoc-Aib-OH

CAS No. :94744-50-0
Formula : C19H19NO4
M.W : 325.36
SMILES Code : CC(C)(NC(OCC1C2=CC=CC=C2C3=CC=CC=C13)=O)C(O)=O
MDL No. :MFCD00151913
InChI Key :HOZZVEPRYYCBTO-UHFFFAOYSA-N
Pubchem ID :2756096

Safety of Fmoc-Aib-OH

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Application In Synthesis of Fmoc-Aib-OH

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 94744-50-0 ]

[ 94744-50-0 ] Synthesis Path-Downstream   1~29

  • 1
  • [ 1223105-51-8 ]
  • (S)-2-((9H-fluoren-9-yloxy)carbonylamino)-3-(2'-ethyl-4'-methoxy-biphenyl-4-yl)propanoic acid [ No CAS ]
  • C34H36N3O5Pol [ No CAS ]
  • [ 29022-11-5 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-35-0 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 516521-28-1 ]
  • 2
  • (S)-2-((9H-fluoren-9-yloxy)carbonylamino)-3-(2'-ethyl-4'-methoxy-biphenyl-4-yl)propanoic acid [ No CAS ]
  • C34H36N3O5Pol [ No CAS ]
  • [ 29022-11-5 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-35-0 ]
  • [ 135944-05-7 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 516518-26-6 ]
  • 3
  • [ 918663-78-2 ]
  • [ 35661-60-0 ]
  • [ 96402-49-2 ]
  • [ 94744-50-0 ]
  • [ 1187754-67-1 ]
  • 4
  • [ 918663-78-2 ]
  • [ 35737-15-6 ]
  • [ 96402-49-2 ]
  • [ 94744-50-0 ]
  • [ 1187754-66-0 ]
  • 5
  • [ 159610-89-6 ]
  • [ 68858-20-8 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 77284-32-3 ]
  • [ 94744-50-0 ]
  • N,N'-bis(tert-butyloxycarbonyl)-L-lysine dicyclohexylamine salt [ No CAS ]
  • [ 198561-07-8 ]
  • [ 1443329-49-4 ]
  • 6
  • [ 872142-89-7 ]
  • [ 1223105-51-8 ]
  • [ 29022-11-5 ]
  • (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(2'-methyl-[1,1'-biphenyl]-4-yl)propanoic acid [ No CAS ]
  • C40H33N3O4S [ No CAS ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-35-0 ]
  • [ 94744-50-0 ]
  • [ 516521-28-1 ]
  • 7
  • polyethylene glycol polyamide resin [ No CAS ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 71989-33-8 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 204777-78-6 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-dSer-Q-G-T-F-T-S-D-L-S-K-Q-K((S)-4-carboxy-4-((S)-4-carboxy-4-hexadecanoylamino-butyrylamino)butyryl)-D-E-E-A-A-R-L-F-I-E-W-L-Aib-A-G-G-P-S-S-G-A-P-P-P-S-NH2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.23 mmol/g. The Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc- Lys(ivDde)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603). Hereafter Palm- yGlu-yGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5muMu) using an acetonitrile/water gradient (both buffers with 0,1 percent TFA). The purified peptide was analysed by LCMS (Method A). Deconvolution of the mass signals found under the peak with retention time 12.61 min revealed the peptide mass 4581 ,5 which is in line with the expected value of 4581 ,1 . Peptide Synthesizer (Protein Technologies Inc) or similar automated synthesizer using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection : 20percent piperidine/DMF for 2 x 2.5 min. Washes: 7 x DMF. Coupling 2:5:10 200 mM AA / 500 mM HBTU / 2M DIPEA in DMF 2 x for 20 min. Washes: 5 x DMF. In cases where a Lys-side-chain was modified, Fmoc-L-Lys(ivDde)-OH or Fmoc-L- Lys(Mmt)-OH was used in the corresponding position. After completion of the synthesis, the ivDde group was removed according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4percent hydrazine hydrate in DMF. The Mmt group was removed by repeated treatment with 1 percent TFA in dichloromethane. The following acylations were carried out by treating the resin with the N-hydroxy succinimide esters of the desired acid or using coupling reagents like HBTU/DIPEA or HOBt/DIC. All the peptides that have been synthesized were cleaved from the resin with King's cleavage cocktail consisting of 82.5percent TFA, 5percent phenol, 5percent water, 5percent thioanisole, 2.5percent EDT The crude peptides were then precipitated in diethyl or diisopropyl ether, centrifuged, and lyophilized. Peptides were analyzed by analytical HPLC and checked by ESI mass spectrometry. Crude peptides were purified by a conventional preparative RP-HPLC purification procedure.
  • 8
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 112883-29-1 ]
  • [ 35661-40-6 ]
  • [ 136083-57-3 ]
  • [ 104091-09-0 ]
  • [ 71989-23-6 ]
  • [ 35737-15-6 ]
  • [ 73731-37-0 ]
  • [ 71989-16-7 ]
  • [ 105047-45-8 ]
  • [ 73724-45-5 ]
  • [ 71989-20-3 ]
  • [ 91000-69-0 ]
  • [ 96402-49-2 ]
  • [ 94744-50-0 ]
  • Y-(α-aminoisobutyroyl)-EGTFTSDYSIYLDKKAQRAFVNWLLA-(α-aminoisobutyroyl)-KYG-(β-(1-naphthyl)-alaninoyl)-LDF-NH2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
Solid phase peptide synthesis was performed on a CEM Liberty Peptide Synthesizer using standard Fmoc chemistry. TentaGel S Ram resin (1 g; 0.25 mmol/g) was swelled in NMP (10 ml) prior to use and transferred between tube and reaction vessel using DCM and NMP. Coupling (0148) An Fmoc-amino acid in NMP/DMF/DCM (1:1:1; 0.2 M; 5 ml) was added to the resin in a CEM Discover microwave unit together with HATU/DMF or COMU/DMF (0.5 M; 2 ml) and DIPEA/NMP (2.0 M; 1 ml). The coupling mixture was heated to 75° C. for 5 min while nitrogen was bubbled through the mixture. The resin was then washed with NMP (4×10 ml). Deprotection (0149) Piperidine/DMF (20percent; 10 ml) was added to the resin for initial deprotection and the mixture was heated by microwaves (30 sec; 40° C.). The reaction vessel was drained and a second portion of piperidine/NMP (20percent; 10 ml) was added and heated (75° C.; 3 min.) again. The resin was then washed with DMF (6×10 ml). Side Chain Acylation (0150) Fmoc-Lys(ivDde)-OH or alternatively another amino acid with an orthogonal side chain protective group was introduced at the position of the acylation. The N-terminal of the peptide backbone was then Boc-protected using Boc2O or alternatively by using a Boc-protected amino acid in the last coupling. While the peptide was still attached to the resin, the orthogonal side chain protective group was selectively cleaved using freshly prepared hydrazine hydrate (2-4percent) in NMP for 2×15 min. The unprotected lysine side chain was first coupled with Fmoc-Glu-OtBu or another spacer amino acid, which was deprotected with piperidine and acylated with a lipophilic moiety using the peptide coupling methodology as described above. Alternatively, the acylation moiety was introduced as a premade building block e.g. Fmoc-Lys(hexadecanoyl-gamma-Glu)-OH where gamm-Glu is the coupling of Glutamic acid through the side-chain. Abbreviations employed are as follows: COMU: 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)-dimethylamino-morpholinomethylene)]methanaminium hexaflourophosphate ivDde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl Dde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl DCM: dichloromethane DMF: N,N-dimethylformamide (0151) DIPEA: diisopropylethylamine EtOH: ethanol Et2O: diethyl ether HATU: N-[(dimethylamino)-1H-1,2,3-triazol[4,5-b]pyridine-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide MeCN: acetonitrile NMP: N-methylpyrrolidone (0152) TFA: trifluoroacetic acid TIS: triisopropylsilane Cleavage (0153) The resin was washed with EtOH (3×10 ml) and Et2O (3×10 ml) and dried to constant weight at room temperature (r.t.). The crude peptide was cleaved from the resin by treatment with TFA/TIS/water (95/2.5/2.5; 40 ml, 2 h; r.t.). Most of the TFA was removed at reduced pressure and the crude peptide was precipitated and washed three times with diethylether and dried to constant weight at room temperature. HPLC Purification of the Crude Peptide (0154) The crude peptide was purified to greater than 90percent by preparative reverse phase HPLC using a PerSeptive Biosystems VISION Workstation equipped with a C-18 column (5 cm; 10 mum) and a fraction collector and run at 35 ml/min with a gradient of buffer A (0.1percent TFA, aq.) and buffer B (0.1percent TFA, 90percent MeCN, aq.). Fractions were analyzed by analytical HPLC and MS and relevant fractions were pooled and lyophilized. The final product was characterized by HPLC and MS. (0155) The synthesized compounds are shown in Table 1 and Table 2
  • 9
  • [ 35661-60-0 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 103478-62-2 ]
  • [ 77128-73-5 ]
  • [ 94744-50-0 ]
  • C50H69N7O8 [ No CAS ]
  • 10
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 1315449-94-5 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 94744-50-0 ]
  • [ 143824-78-6 ]
  • Y-Aib-E-G-T-F-T-S-D-L-S-I-Q-L-E-E-E-A-V-(R)MeLys-L-F-I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2 [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: Example 1 Synthesis of SEQ ID NO: 10 (0298) The solid phase synthesis was carried out on Rink-resin with a loading of 0.29 mmol/g, 75-150 mum from the company Agilent Technologies. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5 muM) using an acetonitrile/water gradient (both buffers with 0.1% TFA). The purified peptide was analysed by LCMS (Method C4). Deconvolution of the mass signals found under the peak with retention time 9.55 min revealed the peptide mass 4164.1 which is in line with the expected value of 4163.7 The solid phase peptide syntheses were performed for example on a Prelude Peptide Synthesizer (Protein Technologies Inc) or similar automated synthesizer using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2×2.5 min. Washes: 7×DMF. Coupling 2:5:10 200 mM AA/500 mM HBTU/2M DIPEA in DMF 2× for 20 min. Washes: 5×DMF. (0251) All the peptides that had been synthesized were cleaved from the resin with King's cleavage cocktail consisting of 82.5% TFA, 5% phenol, 5% water, 5% thioanisole, 2.5% EDT. The crude peptides were then precipitated in diethyl or diisopropyl ether, centrifuged, and lyophilized. Peptides were analyzed by analytical HPLC and checked by ESI mass spectrometry. Crude peptides were purified by a conventional preparative HPLC purification procedure.
  • 11
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 35661-38-2 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-E-Q-R-Q-Aib-E-F-I-E-W-L-K-A-dAla-G-H-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64.
  • 12
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 35661-38-2 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-K-Q-R-Q-Aib-E-F-I-E-W-L-K-A-dAla-G-H-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized.
  • 13
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 35661-38-2 ]
  • [ 132327-80-1 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-K-Q-R-Q-Aib-E-F-I-E-W-L-K-A-dAla-G-P-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0374) Deconvolution of the mass signals found under the peak with retention time 9.935 min revealed the peptide mass 4853.73 which is in line with the expected value of 4853.67.
  • 14
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 35661-38-2 ]
  • [ 132327-80-1 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-E-Q-R-Q-Aib-E-F-I-E-W-L-K-A-dAla-G-P-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64.
  • 15
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-E-Q-R-Q-Aib-E-F-I-E-W-L-K-A-G-G-H-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized.
  • 16
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 109425-51-6 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-K-Q-R-Q-Aib-E-F-I-E-W-L-K-A-G-G-H-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized.
  • 17
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-K-Q-R-Q-Aib-E-F-I-E-W-L-K-A-G-G-P-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 ODB 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). Deconvolution of the mass signals found under the peak with retention time 9.824 min revealed the peptide mass 4839.67 which is in line with the expected value of 4839.67.
  • 18
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • Palm-γGlu-γGlu-OSu [ No CAS ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 132327-80-1 ]
  • [ 94744-50-0 ]
  • [ 32926-43-5 ]
  • [ 143824-78-6 ]
  • [ 159857-60-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • H-Aib-Q-G-T-F-T-S-D-L-S-K-L-K[gGlu-gGlu-Palm]-E-E-Q-R-Q-Aib-E-F-I-E-W-L-K-A-G-G-P-P-S-Aib-K-P-P-P-K-NH2; Aib=alpha-amino-isobutyric acid, gGlu=gamma-glutamate, Palm=palmitoyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
The solid phase synthesis as described in Methods was carried out on Novabiochem Rink-Amide resin (4-(2?,4?-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucylaminomethyl resin), 100-200 mesh, loading of 0.43 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 14 Fmoc-Lys(Mmt)-OH and in position 1 Boc-His(Trt)-OH were used in the solid phase synthesis protocol. The Mmt-group was cleaved from the peptide on resin as described in the Methods. Hereafter Palm-gGlu-gGlu-OSu was coupled to the liberated amino-group employing DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 1990, 36, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire Prep C18 OBD 5 mum 50×150 mm) using an acetonitrile/water gradient (both buffers with 0.1percent TFA). The purified peptide was analysed by LCMS (Method B). (0376) Deconvolution of the mass signals found under the peak with retention time 9.828 min revealed the peptide mass 4894.63 which is in line with the expected value of 4894.64. In an analogous way, the other peptides listed in Table 3 were synthesized and characterized.
  • 19
  • [ 35661-60-0 ]
  • [ 94744-50-0 ]
  • [ 71989-31-6 ]
  • [ 143674-78-6 ]
  • [ 198561-07-8 ]
  • cyclo[D-Pro-D-Leu-Aib-Pgl-D-Leu-Tyr] [ No CAS ]
  • 20
  • Fmoc-Rink resin [ No CAS ]
  • [ 29022-11-5 ]
  • [ 68858-20-8 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • [ 1315449-94-5 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-18-9 ]
  • [ 108-24-7 ]
  • [ 71989-23-6 ]
  • [ 71989-26-9 ]
  • [ 71989-35-0 ]
  • [ 94744-50-0 ]
  • [ 150629-67-7 ]
  • [ 159766-56-0 ]
  • Nα-(9-fluorenylmethyloxycarbonyl)-Nγ-2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl-L-arginine [ No CAS ]
  • Ac-L-E(OtBu)-G-R(Pfb)-E(OtBu)-K(Boc)-V-R(Pfb)-A-K(Ac)-I-Aib-Aib-E(OtBu)-G-K(Dde)-S(tBu)-T(tBu)-F-S(tBu)-Mly(Boc)-R(Pfb)-A-K(Ac)-NH-Rink Amide Resin, Ac - acetyl, Aib - 2-amino-isobutyric acid, Boc - tert-butyloxycarbonyl, Dde - 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl, Mly - α-methyl-lysine, Pfb - 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl, tBu - tert-butyl [ No CAS ]
YieldReaction ConditionsOperation in experiment
2.A Loading of Fmoc-Lys(Ac)-OH on Rink Amide Resin (0433) In a 100 ml reactor equipped with a sintered glass at the bottom, 6 g of Novabiochem or ChemImpex Rink amide AM resin (Low Loading 0.47 mmol/g) was swelled in 40 ml of DMF. The solvent was drained and 30 ml of 20% piperidine in DMF solution were added. After 15 min shaking, the solvent was drained. This was repeated twice to ensure complete Fmoc protecting group removal. The resin was washed with 5×30 ml DMF. (0434) In a separate flask a solution containing Fmoc-Lys(Ac)-OH (3.5 g, 8 mmol, 3 eq.) HOBT.H2O (1.3 g 8.5 mmol) in 30 ml DMF was prepared. Diisopropylcarbodiimide (DIC) (1 g, 8.5 mmol) was added to this solution and after 5 min the resulting mixture was added to the resin. The suspension was shaken on a stirring plate for 4 h or until completion of the reaction as judged by Kaiser Test (Ninhidrin test) on an aliquot part of the resin. (0435) The solvent was then drained and the resin washed 3 times with 30 ml DMF. Fmoc-Lys(Ac)-NH2 loaded resin was used immediately for subsequent steps or stored wet at 4 C. until needed. (0436) 2.B. Synthesis of Peptide Having the SEQ ID NO: 3 (0437) The following synthesis was performed using 5 times an amount of resin obtained at step 2.A. corresponding to 0.2 mmol of Fmoc-Lys(Ac)-NH2 each. The syntheses were performed separately on each individual batches using a CEM Liberty Blue microwave peptide synthesizer to assemble the second and third residue of the peptide sequence (starting from the C-terminus). (0438) Peptide synthesis was performed by using DIC 0.5M/Oxyma 1M in DMF. (0439) All amino acids were introduced with double couplings using standard heating protocol. (0440) The resin was removed from the synthesizer and Fmoc-alpha-methyl-lysine(Boc)-OH (3 eq.) was coupled manually using 3 eq. Oxyma and 3 eq. DIC with microwave heating (75 C. 15 sec. and 90 C. 110 sec). The completion of the reaction was controlled by Kaiser test. If positive, DIC 3 eq. was added followed by microwave heating as above. When coupling of Fmoc-alpha-methyl-lysine(Boc)-OH was complete the rest of the peptide sequence was assembled using a CEM Liberty Blue microwave peptide synthesizer. (0442) All amino acids were introduced with double couplings at 90 C. as above, with the exception of amino-isobutyric acid at position 21 and serine at position 29 for which a triple coupling at 90 for 2 minutes was performed. Fmoc-Lys(Dde)-OH was used at position 25. (0443) At the end of the 5 syntheses, the 5 batches of resin were combined and transferred into a 50 mL polypropylene syringe and the peptide was acetylated at N-terminus with acetic anhydride (944 10 mmol) in DMF (30 mL) for 20 minutes, repeating the cycle twice. (0444) Then, Dde protecting group on Lysine 25 side chain was removed by percolating 50 mL of a solution of hydrazine 5% w/v in DMF, followed by DMF washes (5×20 ml). The reaction was monitored by Kaiser Test and cleavage of an aliquot part of resin and UPLC/MS analysis. (0445) Three TTDS spacer units were introduced by single coupling by performing three times the following procedure: To the resin a solution of Fmoc-TTDS-OH (1.62 g, 3 mmol) in 30 mL of DMF were added followed by HOAt (5 ml of a 0.6 ml solution in DMF, 3 mmol) and DIC (1 ml, 6 mmol). The syringe was agitated on an orbital table for 18 h. The reaction was monitored by Kaiser Test. The resin was washed with DMF (2×30 mL). Then to the resin, 30 mL of 20% v/v of piperidine in DMF was added. The syringe was agitated on an orbital table for 20 min. This deprotection procedure was repeated a second time and the resin was washed with DMF (2×30 mL) and dichloromethane (3×30 mL). (0446) The three gamma-glutamic acids spacers were introduced by performing a double coupling of each Fmoc-Glu-OtBu. Thus the following procedure was applied three times: To the resin a solution (4S)-5-tert-butoxy-4-(9H-fluoren-9-yl methoxy carbonylamino)-5-oxo-pentanoic acid (Fmoc-Glu-OtBu) (1.275 g, 3 mmol) in of 30 mL of DMF were added followed by HOAt (5 ml of a 0.6 ml solution in DMF 3 mmol) and DIC (1 ml, 6 mmol). The syringe was agitated on an orbital table for 4 h. The resin was washed with DMF (2×20 mL) and the coupling was repeated a second time. The reaction was monitored by Kaiser Test. The resin was washed with DMF (2×30 mL). Then to the resin, 30 mL of 20% v/v of piperidine in DMF was added. The syringe was agitated on an orbital table for 20 min. This deprotection procedure was repeated a second time and the resin was washed with DMF (3×30 mL) and dichloromethane (3×30 mL). (0448) Finally, the peptide was acylated with palmitic acid (768 mg, 3 mmol), HOAt (5 ml of a 0.6 M solution in DMF, 3 mmol) and DIC (1 ml, 6 mmol) activation in DMF (30 mL) for 2.5 h. The resin was washed with DMF (2×30 mL) and dichloromethane (3×30mL) and dried under vacuum. (0449) The cleavage of the peptide from the resin was performed using a solution phenol (6.25 g), water (6.25 mL) and TIPS (3 mL) ...
  • 21
  • [ 2424-92-2 ]
  • [ 1172127-44-4 ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2,4-dimethylpentanoic acid [ No CAS ]
  • [ 84793-07-7 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-35-0 ]
  • [ 47375-34-8 ]
  • [ 94744-50-0 ]
  • [ 104091-08-9 ]
  • [ 76-05-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 166108-71-0 ]
  • Fmoc-Glu(pg)-OH [ No CAS ]
  • Y-Aib-EGT-αMeF(2F)-TSDYSI-αMeL-LDEK((2-[2-(2-aminoethoxy)ethoxy]acetyl)2-(γGlu)-CO-(CH2)18-CO2H)AQ-Aib-EFI-(D-Glu)-YLIEGGPSSGAPPPS-NH2 trifluoroacetic acid salt [ No CAS ]
YieldReaction ConditionsOperation in experiment
General procedure: The peptide backbone of Peptide 1 is synthesized usingFluorenylrnethyloxycarbonyi (Fmoe)/tert-Butyl (t-Bu) chemistry on a Symphony X peptide synthesizer (Gyros Protein Technologies. Tucson, AZ).The resin consists of 1% DVB cross-linked polystyrene (Fmoc-Rink-MBHA Low Loading resin, 100-200 mesh, EMD Millipore) at a substitution of 0.3-0.4 meq/g.Standard side-chain protecting groups were used. Fmoc-Lys(Mtt)-OH is used for the lysine at position 17 and Boc-Tyr(tBu)-QH) was used for the tyrosine at position 1. Frnoc groups are removed prior to each coupling step (2 x 7 minutes) using 20% piperidine in DMF. All standard amino acid couplings are performed for 1 hour to a primary amine and 3 hour to a secondary amine, using an equal molar ratio of Fmoc amino acid (0.3 mM), diisopropyicarbodiimide (0.9 mM) and Qxyma (0.9 mM), at a 9-fold molar excess over the theoretical peptide loading. Exceptions are couplings to C -methylated amino acids, which are coupled for 3 hours. After completion of the synthesis of the peptide backbone, the resin is thoroughly washed with DCM for 6 times to remove residual DMF. The Mtt protecting group on the lysine at position 17 is selectively removed from the peptide resin using two treatments of 30% hexafuoroisopropanol (Oakwood Chemicals) in DCM (2 x 40-minute treatment).Subsequent attachment of the fatty acid-linker moiety is accomplished by coupling of 2-[2-(2-Fmoc-amino-ethoxy)-ethoxy]-acetic acid (Fmoc-AEEA-OH, ChemPep, hie.), Fmoe-glutamie acid or-t-butyl ester (Fmoc-Glu-OtBu, Ark Pharm, Inc.), eicosanedioic acid (WuXi AppTec, Shanghai, China). 3-Fold excess of reagents (AA: PyAQP: DIPEAM : 1 : 1 mol/mol) are used for each coupling that is I -hour long.After the synthesis is complete, the peptide resin is washed with DCM, and then thoroughly air-dried. The dry' resin is treated with 10 mL of cleavage cocktail(trifuoroaeetie acid: water: triisopropylsilane, 95:2,5:2.5 v/v) for 2 hours at room temperature. The resin is filtered off, washed twice each with 2 mL of neat T'FA, and the combined filtrates are treated with 5-fold excess volume of cold diethyl ether (-20C) to precipitate the crude peptide. The peptide/ether suspension is then centrifuged at 3500 rpm for 2 min to form a solid pellet, the supernatant is decanted, and the solid pellet is triturated with ether two additional times and dried in vacuo. The crude peptide is solubilized in 20% aeetonitrile/20%Acetic acid/60%water and purified by RP- HPLC on a Luna 5 /.mi Phenyl-Hexyl preparative column (21 x 250 mm, Phenomenex) with linear gradients of 100% acetonitrile and 0.1% TF A/ water buffer system (30-50% acetonitrile in 60 min). The purity of peptide is assessed using analytical RP-HPLC and pooling criteria is >95%. The main pool purity of compound 1 is found to be 98.0%. Subsequent lyophilization of the final main product pool yielded the lyophilized peptide TFA salt.The molecular weight is determined by LC- MS (obsd: M+3 =1657.2; Calc M+3=1657.0).
  • 22
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 29022-11-5 ]
  • [ 20839-79-6 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C71H120N12O20 [ No CAS ]
  • 23
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 29022-11-5 ]
  • [ 20839-79-6 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C71H120N12O20 [ No CAS ]
  • 24
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 29022-11-5 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C73H124N12O20 [ No CAS ]
  • 25
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 20839-79-6 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C71H120N12O20 [ No CAS ]
  • 26
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 20839-79-6 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C73H124N12O20 [ No CAS ]
  • 27
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 20839-79-6 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C73H124N12O20 [ No CAS ]
  • 28
  • Fmoc-Pro-NovaSyn TGT resin [ No CAS ]
  • [ 178924-05-5 ]
  • [ 71989-14-5 ]
  • [ 71989-23-6 ]
  • [ 66054-37-3 ]
  • [ 130674-54-3 ]
  • [ 101555-63-9 ]
  • [ 94744-50-0 ]
  • C75H128N12O20 [ No CAS ]
  • 29
  • [ 683239-16-9 ]
  • [ 1172127-44-4 ]
  • [ 29022-11-5 ]
  • [ 35661-60-0 ]
  • [ 35661-39-3 ]
  • (S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2,4-dimethylpentanoic acid [ No CAS ]
  • [ 84793-07-7 ]
  • [ 71989-31-6 ]
  • [ 35661-40-6 ]
  • [ 71989-33-8 ]
  • [ 71989-14-5 ]
  • [ 71989-18-9 ]
  • [ 71989-23-6 ]
  • [ 71989-38-3 ]
  • [ 71989-35-0 ]
  • [ 47375-34-8 ]
  • [ 71989-20-3 ]
  • [ 94744-50-0 ]
  • [ 104091-08-9 ]
  • [ 76-05-1 ]
  • (S)-6-[(Diphenyl-p-tolyl-methyl)-amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-hexanoic acid [ No CAS ]
  • [ 166108-71-0 ]
  • Y-Aib-EGT-αMeF(2F)-TSDYSI-αMeL-LDEK((2-[2-(2-aminoethoxy)ethoxy]acetyl)<SUB>2</SUB>-(γ-Glu)-CO-(CH2)<SUB>18</SUB>-CO<SUB>2</SUB>H)AQ-Aib-EFI-(D-Glu)-YLIEGGPSSGAPPPS-NH<SUB>2</SUB><SUB> trifluoroacetic acid salt</SUB> [ No CAS ]
YieldReaction ConditionsOperation in experiment
The peptide backbone of Example 1 is synthesized using Fluorenylmethyloxycarbonyl (Fmoc)/tert-Butyl (t-Bu) chemistry on a Symphony X peptide synthesizer (Gyros Protein Technologies. Tucson, Ariz.). The resin consists of 1% DVB cross-linked polystyrene (Fmoc-Rink-MBHA Low Loading resin, 100-200 mesh, EMD Millipore) at a substitution of 0.3-0.4 meq/g. Standard side-chain protecting groups were used. Fmoc-Lys(Mtt)-OH is used for the lysine at position 17 and Boc-Tyr(tBu)-OH) was used for the tyrosine at position 1. Fmoc groups are removed prior to each coupling step (2×7 minutes) using 20% piperidine in DMF. All standard amino acid couplings are performed for 1 hour to a primary amine and 3 hour to a secondary amine, using an equal molar ratio of Fmoc amino acid (0.3 mM), diisopropylcarbodiimide (0.9 mM) and Oxyma (0.9 mM), at a 9-fold molar excess over the theoretical peptide loading. Exceptions are couplings to Calpha-methylated amino acids, which are coupled for 3 hours. After completion of the synthesis of the peptide backbone, the resin is thoroughly washed with DCM for 6 times to remove residual DMF. The Mtt protecting group on the lysine at position 17 is selectively removed from the peptide resin using two treatments of 300 hexafluoroisopropanol (Oakwood Chemicals) in DCM (2×40-minute treatment). Subsequent attachment of the fatty acid-linker moiety is accomplished by coupling of 2-[2-(2-Fmoc-amino-ethoxy)-ethoxy]-acetic acid (Fmoc-AEEA-OH, ChemPep, Inc.), Fmoc-glutamic acid alpha-t-butyl ester (Fmoc-Glu-OtBu, Ark Pharm, Inc.), mono-OtBu-eicosanedioic acid (WuXi AppTec, Shanghai, China). 3-Fold excess of reagents (AA:PyAOP:DIPEA=1:1:1 mol/mol) are used for each coupling that is 1-hour long. After the synthesis is complete, the peptide resin is washed with DCM, and then thoroughly air-dried. The dry resin is treated with 10 mL of cleavage cocktail (trifluoroacetic acid:water:triisopropylsilane, 95:2.5:2.5 v/v) for 2 hours at room temperature. The resin is filtered off, washed twice each with 2 mL of neat TFA, and the combined filtrates are treated with 5-fold excess volume of cold diethyl ether (-20 C.) to precipitate the crude peptide. The peptide/ether suspension is then centrifuged at 3500 rpm for 2 min to form a solid pellet, the supernatant is decanted, and the solid pellet is triturated with ether two additional times and dried in vacuo. The crude peptide is solubilized in 20% acetonitrile/20% Acetic acid/60% water and purified by RP-HPLC on a Luna 5 mum Phenyl-Hexyl preparative column (21*250 mm, Phenomenex) with linear gradients of 100% acetonitrile and 0.1% TFA/water buffer system (30-50% acetonitrile in 60 min). The purity of peptide is assessed using analytical RP-HPLC and pooling criteria is >95%. The main pool purity of compound 1 is found to be 98.0%. Subsequent lyophilization of the final main product pool yielded the lyophilized peptide TFA salt. The molecular weight is determined by LC-MS (obsd. M+3=1657.2; Calc M+3=1657.0).
 

Historical Records

Categories