Structure of Fmoc-Orn(Boc)-OH
CAS No.: 109425-55-0
*Storage:
*Shipping:
4.5
*For Research Use Only !
Change View
Size | Price | US Stock | Global Stock | In Stock |
1g | łÇʶÊÊ | Inquiry | Inquiry | |
5g | łÇ˶ÊÊ | Inquiry | Inquiry | |
10g | łÇÿ¶ÊÊ | Inquiry | Inquiry | |
25g | łÇó¶ÊÊ | Inquiry | Inquiry | |
100g | łÿó¶ÊÊ | Inquiry | Inquiry | |
500g | łËóî¶ÊÊ | Inquiry | Inquiry | |
1kg | łÍî˶ÊÊ | Inquiry | Inquiry |
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
łÇʶÊÊ
łÇ˶ÊÊ
łÇÿ¶ÊÊ
łÇó¶ÊÊ
łÿó¶ÊÊ
łËóî¶ÊÊ
łÍî˶ÊÊ
In Stock
- +
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics
Kotynia, Aleksandra ; Wiatrak, Benita ; Kamysz, Wojciech ; Neubauer, Damian ; Jawien, Paulina ; Marciniak, Aleksandra
Abstract: Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these mols. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with potential biol. activity. The coordination behavior of all ligands with Cu(II) and Ni(II) ions has been examined Various anal. methods such as potentiometric titration, UV-Vis and CD spectroscopies, and mass spectrometry were used. All compounds are convenient chelators for metal ion-binding. Two of the ligands tested have histidine residues. Surprisingly, imidazole nitrogen is not involved in the coordination of the metal ion. The N-terminal amino group, Dab side chains, and amide nitrogen atoms of the peptide bonds coordinated Cu(II) and Ni(II) in all the complexes formed. The cytotoxicity of three pseudopeptides and their complexes was evaluated. Moreover, their other model allowed for assessing the attenuation of LPS-induced cytotoxicity and anti-inflammatory activities were also evaluated, the results of which revealed to be very promising.
Show More >
Keywords: Cu(II) complexes ; LPS-neutralization ; Ni(II) complexes ; anti-inflammatory ; cationic peptides ; potentiometric titration ; spectroscopic methods
Show More >
Purchased from AmBeed: 109425-55-0
Show More >
CAS No. : | 109425-55-0 |
Formula : | C25H30N2O6 |
M.W : | 454.52 |
SMILES Code : | O=C(O)[C@H](CCCNC(OC(C)(C)C)=O)NC(OCC1C2=CC=CC=C2C3=CC=CC=C13)=O |
MDL No. : | MFCD00065668 |
InChI Key : | JOOIZTMAHNLNHE-NRFANRHFSA-N |
Pubchem ID : | 2756114 |
GHS Pictogram: | ![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 33 |
Num. arom. heavy atoms | 12 |
Fraction Csp3 | 0.4 |
Num. rotatable bonds | 13 |
Num. H-bond acceptors | 6.0 |
Num. H-bond donors | 3.0 |
Molar Refractivity | 123.33 |
TPSA ? Topological Polar Surface Area: Calculated from | 113.96 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from | 3.04 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by | 4.1 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from | 4.28 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from | 2.6 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by | 3.39 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions | 3.48 |
Log S (ESOL):? ESOL: Topological method implemented from | -4.65 |
Solubility | 0.0101 mg/ml ; 0.0000223 mol/l |
Class? Solubility class: Log S scale | Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from | -6.2 |
Solubility | 0.000287 mg/ml ; 0.000000633 mol/l |
Class? Solubility class: Log S scale | Poorly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by | -6.56 |
Solubility | 0.000125 mg/ml ; 0.000000275 mol/l |
Class? Solubility class: Log S scale | Poorly soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg | High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg | No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) | Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) | No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) | No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) | Yes |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) | Yes |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) | Yes |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from | -6.16 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from | 0.0 |
Ghose? Ghose filter: implemented from | None |
Veber? Veber (GSK) filter: implemented from | 1.0 |
Egan? Egan (Pharmacia) filter: implemented from | 0.0 |
Muegge? Muegge (Bayer) filter: implemented from | 0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat | 0.56 |
PAINS? Pan Assay Interference Structures: implemented from | 0.0 alert |
Brenk? Structural Alert: implemented from | 1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from | No; 1 violation:MW<3.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) | 4.41 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Synthesis of the peptide is carried out by a regular stepwise Fmoc SPPS procedure starting from 2-Cl-Trt-chloride resin. The first amino acid (Fmoc-Gly) is loaded on the resin as described in previous examples to obtain a loading of about 0.7 mmol/g of amino acid/resin. After washing of the resin and removal of the Fmoc group by treatment with piperidine/DMF, the second amino acid (Fmoc-Orn(Boc)) is introduced to continue sequence elongation. Fmoc protected amino acids are activated in situ using TBTU/HOBt and subsequently coupled to the resin over about 50 minutes. Diisopropylethylamine or collidine is used during coupling as an organic base. Completion of the coupling is indicated by ninhydrin test. After washing of the resin, the Fmoc protecting group on the alpha-amine is removed with 20% piperidine in DMF for 20 min. These steps are repeated each time with another amino acid according to the peptide sequence. All amino acids used are Fmoc-Nalpha protected. Trifunctional amino acids are side chain protected as follows: Cys(Acm), Thr(tBu), Asn(Trt), and Orn(Boc). Three equivalents of the activated amino acids are used in the coupling reactions. At the end of the synthesis, the peptide-resin is washed with DMF, followed by DCM, and dried under vacuum to obtain dry peptide-resin. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: Loading of the HMPB-MBHA-resin: The HMPB-MBHA-resin (theoretical loading=1.2 mmol/g, 2 mmol, 1.67 g) was suspended in 1,2-dichloroethane (10 mL) and concentrated thrice. Then a solution of the first amino acid (5 equiv, 10 mmol), DIC (5 equiv, 10 mmol, 1.54 mL), and DMAP (0.01 equiv, 20 mumol, 3 mg) in dry DCM/DMF (50 mL, 10:1 v/v) was added. The mixture was shaken for 3 h and then drained, washed subsequently with DCM, NMP, DCM, and Et2O. The resin was dried before determination of the loading. The loading procedure was repeated when the loading of the resin was found to be too low.Stepwise elongation: Fmoc-DPhe-HMPB-MBHA-resin (loading of the resin was 0.50 mmol/g, 100 mumol, 200 mg) was submitted to nine cycles of Fmoc solid-phase synthesis with the appropriate commercial amino acid building blocks, or Fmoc-beta2hVal-OH. The side chain of ornithine is protected with a Boc-group. Fmoc removal was effected by treatment with 20% piperidine in NMP for 2×10 min. The resin was subsequently washed with NMP, DCM, MeOH, and finally NMP. Fmoc-AA-OH (2.5 equiv, 250 mumol), HCTU (2.5 equiv, 250 mumol, 103 mg) in NMP was pre-activated for 1 min after the addition of DiPEA (3 equiv, 300 mumol, 53 muL) and then added to the resin. The suspension was shaken for 1.5 h. The resin was washed with NMP, DCM, MeOH, and NMP.Cleavage from the resin: After the final Fmoc deprotection the resin was washed with NMP and DCM and treated with 5 mL 1% TFA in DCM (6×10 min). The filtrates were collected, diluted with toluene (15 mL), and concentrated under reduced pressure. The residue was coevaporated with toluene (2×50 mL).Cyclization: In DMF (80 mL) were dissolved PyBOP (5 equiv, 500 mumol, 260 mg), HOBt (5 equiv, 500 mumol, 77 mg), and DiPEA (15 equiv, 1.5 mmol, 262 muL). The linear decapeptide was dissolved in DMF (5 mL) and added dropwise over 1 h to the reaction mixture. After addition the mixture was stirred for 16 h. The reaction mixture was concentrated in vacuo and the crude mixture was subjected to LH-20 size exclusion chromatography.Boc deprotection: The peptide was dissolved in DCM (2 mL) and TFA (2 mL) was added. The mixture was stirred for 2 h, concentrated, and coevaporated with toluene (2×10 mL). The obtained crude product was applied to preparative HPLC purification. Using gradients of aqueous TFA and acetonitrile the cyclic peptides 1-13 were obtained in the yield range 20-45%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: Loading of the HMPB-MBHA-resin: The HMPB-MBHA-resin (theoretical loading=1.2 mmol/g, 2 mmol, 1.67 g) was suspended in 1,2-dichloroethane (10 mL) and concentrated thrice. Then a solution of the first amino acid (5 equiv, 10 mmol), DIC (5 equiv, 10 mmol, 1.54 mL), and DMAP (0.01 equiv, 20 mumol, 3 mg) in dry DCM/DMF (50 mL, 10:1 v/v) was added. The mixture was shaken for 3 h and then drained, washed subsequently with DCM, NMP, DCM, and Et2O. The resin was dried before determination of the loading. The loading procedure was repeated when the loading of the resin was found to be too low.Stepwise elongation: Fmoc-DPhe-HMPB-MBHA-resin (loading of the resin was 0.50 mmol/g, 100 mumol, 200 mg) was submitted to nine cycles of Fmoc solid-phase synthesis with the appropriate commercial amino acid building blocks, or Fmoc-beta2hVal-OH. The side chain of ornithine is protected with a Boc-group. Fmoc removal was effected by treatment with 20% piperidine in NMP for 2×10 min. The resin was subsequently washed with NMP, DCM, MeOH, and finally NMP. Fmoc-AA-OH (2.5 equiv, 250 mumol), HCTU (2.5 equiv, 250 mumol, 103 mg) in NMP was pre-activated for 1 min after the addition of DiPEA (3 equiv, 300 mumol, 53 muL) and then added to the resin. The suspension was shaken for 1.5 h. The resin was washed with NMP, DCM, MeOH, and NMP.Cleavage from the resin: After the final Fmoc deprotection the resin was washed with NMP and DCM and treated with 5 mL 1% TFA in DCM (6×10 min). The filtrates were collected, diluted with toluene (15 mL), and concentrated under reduced pressure. The residue was coevaporated with toluene (2×50 mL).Cyclization: In DMF (80 mL) were dissolved PyBOP (5 equiv, 500 mumol, 260 mg), HOBt (5 equiv, 500 mumol, 77 mg), and DiPEA (15 equiv, 1.5 mmol, 262 muL). The linear decapeptide was dissolved in DMF (5 mL) and added dropwise over 1 h to the reaction mixture. After addition the mixture was stirred for 16 h. The reaction mixture was concentrated in vacuo and the crude mixture was subjected to LH-20 size exclusion chromatography.Boc deprotection: The peptide was dissolved in DCM (2 mL) and TFA (2 mL) was added. The mixture was stirred for 2 h, concentrated, and coevaporated with toluene (2×10 mL). The obtained crude product was applied to preparative HPLC purification. Using gradients of aqueous TFA and acetonitrile the cyclic peptides 1-13 were obtained in the yield range 20-45%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20percent piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1percent CF3COOH in the gradient system: 30 min gradient,30-100percent CH3CN-H2O-0.1percent CF3COOH at 215 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20percent piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1percent CF3COOH in the gradient system: 30 min gradient,30-100percent CH3CN-H2O-0.1percent CF3COOH at 215 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20% piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1% CF3COOH in the gradient system: 30 min gradient,30-100% CH3CN-H2O-0.1% CF3COOH at 215 nm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: In a reaction vessel, Fmoc-protected Rink amide MBHA resinwas first swelled in DMF for fifteen min. A solution of 20% piperidinein DMF was added and mixture shaken mechanically for15 min resulting in the removal of Fmoc group. The required Fmocprotected amino acids and coupling reagent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) were placed in amino acid vessels sequentially. DMF was added to theamino acid vessel, which was subsequently added (by positivepressure of N2) to the reaction vessel containing the resin, followedby addition of N,N-diisppropylethylamine (DIEA). After 3 h of mechanicalshaking at ambient temperature, the solvent was drainedand the resin washed with DMF (3 x 5 min) followed by methanol(2 x 5 mL). The cycles of deprotection and coupling were repeatedtill the desired peptide chain length was obtained. The resin-boundpeptide was transferred to a round bottom flask, and simultaneousremoval of resin and protective groups was achieved by using acocktail combination of TFA:triisopropylsilane (TIPS):H2O[95:2.5:2.5] for 3 h. The crude peptide was filtered and purified onpreparative HPLC system, and analyzed using solvent system ofCH3CN-H2O-0.1% CF3COOH in the gradient system: 30 min gradient,30-100% CH3CN-H2O-0.1% CF3COOH at 215 nm. |
Tags: Fmoc-Orn(Boc)-OH | N-protective Amino Acid | Carbamates | Organic Building Blocks | Amino Acids | 109425-55-0
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL