*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
Ethyl Vanillate is a flavouring agent exhibits strong antioxidant activity, it's a vanillin analog, also used in the food industry.
Synonyms: Bourbonal; Ethylprotal
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 617-05-0 |
Formula : | C10H12O4 |
M.W : | 196.20 |
SMILES Code : | CCOC(=O)C1=CC(OC)=C(O)C=C1 |
Synonyms : |
Bourbonal; Ethylprotal
|
MDL No. : | MFCD00017269 |
InChI Key : | MWAYRGBWOVHDDZ-UHFFFAOYSA-N |
Pubchem ID : | 12038 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
98% | With sulfuric acid; for 48h;Inert atmosphere; Reflux; | Synthesis of ethyl 4-hydroxy-3-methoxybenzoate: In a round bottomed flask equipped with a nitrogen inlet and a magnetic stir bar, a solution of vanillic acid (10 g, 59.49 mmol) in EtOH (400 mL) was added. To the above solution 600 mg (6.11 mmol) of cone. H2SO4 was added. The mixture was then stirred at reflux temperature for 48 h. The solution was rotary evaporated. Water (100 mL) was then added to the residue and the separated greenish oil was then removed by using separately funnel. Product was then dried in vacuo to obtain 11.45 g (98 %) of ethyl 4-hydroxy-3-methoxybenzoate. 1H NMR (400 MHz, Chloroform-d) delta 7.62 (dd, J= 8.5, 2.1 Hz, 1H), 7.53 (d, J= 1.8 Hz, 1H), 6.91 (d, J= 8.6 Hz, 1H), 4.33 (q, J= 7.1 Hz, 2H), 3.91 (s, 3H), 1.36 (t, J= 7.3 Hz, 3H). HPLC-MS: Expected: 197 (MH+); Found: 197. |
98% | With sulfuric acid; for 48h;Reflux; Inert atmosphere; | In a round bottomed flask equipped with a nitrogen inlet and a magnetic stir bar, a solution of 4-hydroxy-3- methoxybenzoic acid (10 g, 59.49 mmol) in EtOH (400 mL) was added. To the above solution 600 mg (6.11 mmol) of cone. H2SO4 was added. The mixture was then stirred at reflux temperature for 48 h. The solution was rotary evaporated. Water (100 mL) was then added to the residue and a greenish oily compound separates out. The greenish oil was then separated and then dried in vacuo to 11.45 g (98 %) of ethyl 4-hydroxy-3- methoxybenzoate. (0284) 1H NMR (400 MHz, Chloroform-d) delta 7.62 (dd, J = 8.5, 2.1 Hz, 1H), 7.53 (d, J = 1.8 Hz, 1H), 6.91 (d, J = 8.6 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 1.36 (t, J = 7.3 Hz, 3H). HPLC-MS: Expected: 197 (MH+); Found: 197 |
With sulfuric acid; for 10h;Reflux; | 4-Hydroxy-3-methoxybenzoic acid (20 g, 119 mmol) in ethanol (50 mL) was treated with concentrated sulfuric acid (3 mL) under reflux for 10 h. The solvent was evaporated until no longer liquid outflow. Water (20 mL) was added, extracting by adding respectively 30 mL ethyl acetate. After washing the organic phase with saturated NaCl solution (40 mL), drying it with anhydrous Na2SO4 and evaporating the solvent under reduced pressure. Crude product were purified by column chromatography, product 2 appeared. |
With hydrogenchloride; at 60℃; for 14h; | [0573j To a solution of 4-hydroxy-3-methoxybenzoic acid (6-A) (5 g, 29.7 mmol) in EtOH (20 mL) was added HC1. The mixture was stirred for 60C for 14 h. The reaction was concentrated to afford crude ethyl 4-hydroxy-3-methoxybenzoate (6-B) (4.6 g, 79% yield). | |
With sulfuric acid; In water; for 6h;Reflux; | General procedure: Hydrazides (30-58) were synthesized by one pot conventionalmethod24 Benzoic acid or its derivative (10 mmol) was dissolvedin ethanol (20 mL). Sulfuric acid (3 N, 2 mL) was added and thereaction contents were refluxed for six hours. The reaction wasmonitored with TLC. After the completion of the reaction, the reactionmixture was neutralized by adding solid NaHCO3, and filteredto remove excess of NaHCO3. In the neutralized reaction mixture which contains ethyl ester, hydrazine monohydrate (1.5 mL,3 mmol) was added and refluxed for 3-6 h to complete the reaction.Ethanol and unreacted hydrazine were removed by distillationupto 1/3 volume. The reaction contents were cooled, filteredand recrystallized from methanol to obtain the desired hydrazidecrystals (see Supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
73% | With hydrazine hydrate; In ethanol; water;Reflux; | General procedure: Hydrazides (30-58) were synthesized by one pot conventionalmethod24 Benzoic acid or its derivative (10 mmol) was dissolvedin ethanol (20 mL). Sulfuric acid (3 N, 2 mL) was added and thereaction contents were refluxed for six hours. The reaction wasmonitored with TLC. After the completion of the reaction, the reactionmixture was neutralized by adding solid NaHCO3, and filteredto remove excess of NaHCO3. In the neutralized reaction mixture which contains ethyl ester, hydrazine monohydrate (1.5 mL,3 mmol) was added and refluxed for 3-6 h to complete the reaction.Ethanol and unreacted hydrazine were removed by distillationupto 1/3 volume. The reaction contents were cooled, filteredand recrystallized from methanol to obtain the desired hydrazidecrystals (see Supporting information). |
With hydrazine hydrate; In ethanol; for 20h;Reflux; | A stirred solution of compound 2 (50 mmol) in ethanol (50 mL) was treated with 85% hydrazine hydrate (20 mL), under reflux for 20 h. After cooling, removal of the solvent under reduced pressure gave a crude product, which was filtered off and purified by washing with saturated NaCl (40 mL) together with small quantity of ethanol to give compound 3. |