Home Cart Sign in  
Chemical Structure| 92409-34-2 Chemical Structure| 92409-34-2

Structure of 92409-34-2

Chemical Structure| 92409-34-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Jeong, Hanseob ; Park, Jun Beom ; Oh, Da Hae ; Yoo, Chang Geun ; Jeong, Keunhong ; Kim, Kwang Ho

Abstract: Lignin valorization is essential for the economic viability of modern biorefineries and addresses the increasing demand for renewable energy and sustainable materials. Despite lignin’s potential, its inherent recalcitrance complicates efficient conversion into valuable products. This study explores catalytic hydrogenolysis as a method for depolymerizing polymeric lignin into high-value monomeric phenols. We investigated the hydrogenolysis of three lignin samples − milled wood lignin (MWL), ethanol organosolv lignin (OL), and residual lignin obtained after supercritical water treatment (SCWL) − extracted from Mongolian oak using isopropyl alcohol and an Ru/C catalyst. Structural analysis revealed significant differences, with MWL exhibiting abundant β-O-4 linkages, resulting in the highest monomeric phenol yield (28.4 wt %), compared to OL (10.5 wt %) and SCWL (5.6 wt %). Additionally, a lignin model dimer was used to provide mechanistic insights into the hydrogenolytic cleavage of lignin. Density functional theory (DFT) calculations of bond dissociation energies (BDEs) for C−O and C−C bonds highlight the challenges of breaking recalcitrant C−C bonds. Our findings emphasize the need to tailor hydrogenolysis conditions based on lignin structural features to maximize monomer yields, advancing strategies for lignin valorization.

Purchased from AmBeed:

Alternative Products

Product Details of [ 92409-34-2 ]

CAS No. :92409-34-2
Formula : C18H22O7
M.W : 350.36
SMILES Code : OC(C1=CC(OC)=C(O)C(OC)=C1)C(OC2=CC=CC=C2OC)CO
MDL No. :MFCD29047019
Boiling Point : No data available
InChI Key :DNBBCCRTOKYTRC-UHFFFAOYSA-N
Pubchem ID :13652188

Safety of [ 92409-34-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 92409-34-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 25
Num. arom. heavy atoms 12
Fraction Csp3 0.33
Num. rotatable bonds 8
Num. H-bond acceptors 7.0
Num. H-bond donors 3.0
Molar Refractivity 90.86
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

97.61 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

3.03
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.68
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.57
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.57
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.24
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.82

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.9
Solubility 0.443 mg/ml ; 0.00127 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-3.34
Solubility 0.159 mg/ml ; 0.000453 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.78
Solubility 0.0587 mg/ml ; 0.000167 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-7.24 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

3.61
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 92409-34-2 ]

Aryls

Chemical Structure| 171485-39-5

A153206 [171485-39-5]

4-((1R,2S)-2-(4-Allyl-2,6-dimethoxyphenoxy)-1-hydroxypropyl)-2-methoxyphenol

Similarity: 0.96

Chemical Structure| 10535-17-8

A269929 [10535-17-8]

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.92

Chemical Structure| 56122-34-0

A105428 [56122-34-0]

1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 92409-15-9

A266627 [92409-15-9]

2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 13392-26-2

A207534 [13392-26-2]

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

Similarity: 0.89

Ethers

Chemical Structure| 171485-39-5

A153206 [171485-39-5]

4-((1R,2S)-2-(4-Allyl-2,6-dimethoxyphenoxy)-1-hydroxypropyl)-2-methoxyphenol

Similarity: 0.96

Chemical Structure| 10535-17-8

A269929 [10535-17-8]

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.92

Chemical Structure| 56122-34-0

A105428 [56122-34-0]

1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 92409-15-9

A266627 [92409-15-9]

2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 29509-30-6

A188791 [29509-30-6]

2-Phenoxy-1-phenylpropan-1-ol

Similarity: 0.86

Alcohols

Chemical Structure| 171485-39-5

A153206 [171485-39-5]

4-((1R,2S)-2-(4-Allyl-2,6-dimethoxyphenoxy)-1-hydroxypropyl)-2-methoxyphenol

Similarity: 0.96

Chemical Structure| 10535-17-8

A269929 [10535-17-8]

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.92

Chemical Structure| 56122-34-0

A105428 [56122-34-0]

1-(4-Hydroxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 92409-15-9

A266627 [92409-15-9]

2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)propane-1,3-diol

Similarity: 0.90

Chemical Structure| 13392-26-2

A207534 [13392-26-2]

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

Similarity: 0.89