Home Cart Sign in  
Chemical Structure| 907606-68-2 Chemical Structure| 907606-68-2

Structure of 907606-68-2

Chemical Structure| 907606-68-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 907606-68-2 ]

CAS No. :907606-68-2
Formula : C14H23NO6
M.W : 301.34
SMILES Code : O=C([C@H]1NC[C@@]2([H])[C@]1([H])CCC2)OC(C)(C)C.O=C(O)C(O)=O
MDL No. :MFCD22124391
InChI Key :ZCTXDLWZMFBZEV-PUBMXKGKSA-N
Pubchem ID :67080120

Safety of [ 907606-68-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P261-P280-P305+P351+P338

Computational Chemistry of [ 907606-68-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 21
Num. arom. heavy atoms 0
Fraction Csp3 0.79
Num. rotatable bonds 4
Num. H-bond acceptors 7.0
Num. H-bond donors 3.0
Molar Refractivity 78.88
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

112.93 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.32
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-0.48
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.49
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.54
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.74
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.92

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.14
Solubility 21.7 mg/ml ; 0.0721 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.42
Solubility 11.3 mg/ml ; 0.0376 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.08
Solubility 2.48 mg/ml ; 0.00822 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-8.48 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.56

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<0.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

3.39

Application In Synthesis of [ 907606-68-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 907606-68-2 ]
  • Downstream synthetic route of [ 907606-68-2 ]

[ 907606-68-2 ] Synthesis Path-Upstream   1~7

  • 1
  • [ 540-88-5 ]
  • [ 144-62-7 ]
  • [ 907606-68-2 ]
YieldReaction ConditionsOperation in experiment
59.7%
Stage #1: at 0 - 21℃;
Stage #2: With methanesulfonic acid In dichloromethane; water at 0 - 21℃; for 18.25 h; Sealed tube
6.2 Example 29:; Preparation of (1 S,3aR,6aS)-octahydrocyclopenta[c]pyrrole- 1 - carboxylic acid t-butyl ester oxalic acid 1 : 1 salt from (lS,3aR,6aS)- octahydrocyclopenta[c]pyrrole-l -carboxylic acid hydrochloride.; [0419] Step 1 : To a 1650 mL thick- walled glass pressure bottle (Ace Glass, Inc., 8648-157) equipped with a magnetic stirring bar was charged 75 g (306.9 mmol) of the (lS,3aR,6aS)- octahydrocyclopenta[c]pyrrole-l -carboxylic acid hydrochloride / ammonium chloride admixture prepared in Example 28, 375 mL dichloromethane, and 497 mL t-butyl acetate. The resulting mixture was stirred vigorously at ambient temperature (about 210C) to break large aggregates to provide a free-stirring suspension. This suspension was cooled to an internal temperature of 00C using a brine - ice bath and 75.4 mL (1162 mmol) methanesulfonic acid was added dropwise over 15 minutes, during which the internal temperature rose to 5°C. The pressure bottle was sealed and the reaction mixture was allowed to warm to ambient temperature (about 210C) with vigorous stirring over 18 hours, during which the reaction mixture became a suspension of white inorganic salts in an amber solution. The mixture was cooled in an ice bath and the pressure bottle carefully vented and uncapped. The mixture was transferred to a 3 L flask and cooled in an ice bath with stirring. 400 mL of 50percent (wt:wt) NaOH in water was added to the mixture over 35 minutes while maintaining its temperature below 200C. The stirring was halted and the phases were allowed to separate. The organic phase (-850 mL) was removed to a separate vessel. The remaining aqueous phase and rag layer (pH 13, -800 mL) were extracted with 375 mL dichloromethane. The organic phases were combined (-1250 mL) and washed with water (2 x 225 mL). The resulting organic phase was filtered to remove a rag layer and any insoluble material, and the solvent was removed by rotary vacuum evaporation to give 48.3 g dark-amber oil. The 1H NMR spectrum of the oil showed (lS,3aR,6aS)- octahydrocyclopenta[c]pyrrole-l-carboxylic acid ?-butyl ester.[0420] A second preparation following the same procedure yielded was 50.6 g of the trans- (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid t-butyl ester oil.[0421] Step 2: 97.9 g (463.3 mmol) of (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid t-butyl ester from the two preparations according to Step 1 were dissolved in 750 mL t-butyl acetate and charged to a 3 L four-neck flask equipped with overhead mechanical stirring, a thermometer, addition funnel, and reflux condenser. With stirring at ambient temperature (-210C), a solution of 44.0 g (488.6 mmol) of oxalic acid in 750 mL 2-propanol was added dropwise over 37 minutes, increasing the mixture's temperature to 31°C. Solids began to precipitate after addition of -50 mL of the oxalic acid solution, and resulted in a thick suspension after the addition of 450 mL. After addition of 500 mL of the oxalate solution, the precipitated solids redissolved to provide a dark yellow solution. Solids precipitated again rapidly after the addition of 600 mL of the oxalic solution and persisted through the end of the oxalic acid addition. This suspension was then heated 78°C to provide a thin suspension which was allowed to cool passively with stirring to ambient temperature (-210C). After 16 hours since the cooling began, the precipitated solids were collected by filtration and washed successively with isopropanol (450 mL), isopropyl acetate (450 mL), and methyl t-butyl methyl ether (450 mL). The solids were dried in a vacuum oven (300C, 25" vacuum, N2 stream) to provide 118.1 g (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid t-butyl ester oxalic acid 1 : 1 salt (64percent yield from (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid hydrochloride) as a dense, tan free flowing powder (99.7percent purity by GC analysis), which exhibited the expected 1H-NMR spectrum for (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid ?-butyl ester oxalic acid (1 : 1) salt.[0422] Recrystallization of (1 S,3aR,6aS)- octahydrocyclopenta[c]pyrrole- 1 -carboxylic acid t-butyl ester oxalic acid (1 :1) salt: The tan powder from Step 2 above (118. I g, 391.9 mmol) and isopropanol (1950 mL) were charged to a 3 L four neck flask equipped with a mechanical stirring, a thermometer, and a reflux condenser. The suspension was stirred and heated to 74°C to completely dissolve the salt, resulting in a yellow solution. The stirring was slowed and the solution was allowed to cool passively to ambient temperature (-210C). After 20 hours since the cooling began, the precipitated solids collected by filtration and washed successively with isopropanol (1 L), isopropyl acetate (1 L), and methyl ?-butyl methyl ether (1 L). The solids were dried in a vacuum oven (400C, 28" vacuum, N2 stream) to provide 110.45 g (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l-carboxylic acid t-butyl ester oxalic acid 1 :1 salt (59.7percent yield from (lS,3aR,6aS)-octahydrocyclopenta[c]pyrrole-l -carboxylic acid hydrochloride) as fine, off-white needles of 99.9percent purity by GC analysis). Chiral GC analysis showed only the desired (lS,3aR,6aS)-stereoisomer. Its (2S)-epimer was not detected.
References: [1] Patent: WO2010/8828, 2010, A2, . Location in patent: Page/Page column 96-98.
  • 2
  • [ 540-88-5 ]
  • [ 1205676-44-3 ]
  • [ 144-62-7 ]
  • [ 907606-68-2 ]
YieldReaction ConditionsOperation in experiment
0.08 g
Stage #1: With methanesulfonic acid In chloroform at 0 - 25℃; for 18 h;
Stage #2: at 75 - 80℃; for 0.5 h;
[Isolation of Hydrogenoxalate] [0155] To 250 mg of the mixture of the hydrochloride of amino acid (i) and ammonium chloride prepared in Example 29 were added 4 mL of chloroform and 1.7 mL of tert-butyl acetate. The resulting suspension was cooled to 0° C. and then 0.25 mL of methanesulfonic acid was added. The mixture was warmed slowly to 25° C. and then stirred at this temperature for 18 hours. The resulting white suspension was cooled to 0° C., and then 1.3 mL of a 50percent aqueous sodium hydroxide solution was added carefully with the temperature kept at 20° C. or lower. Water (15 mL) and chloroform (15 mL) were added and then stirred for 15 minutes. The layers were separated and the aqueous layer was subjected to extraction with 15 mL of chloroform three times. The organic layers were combined, dried over magnesium sulfate, and filtered. The solvent was then evaporated under reduced pressure. To the pale green residue was added a solution of 2.5 mL of tert-butyl acetate and 146.7 mg of oxalic acid in 2-propanol (2.5 mL). The resulting mixture was heated to 75 to 80° C., stirred for 30 minutes, allowed to cool to ambient temperature (about 20° C.), stirred for 18 hours, and then filtered. The resulting cake was washed with 5 mL of 2-propanol and with 5 mL of methyl tert-butyl ether respectively and then dried, affording 0.08 g (0.27 mmol: overall yield from nitrile (h): 25percent) of hydrogenoxalate of tert-butyl (j) as a white solid.
References: [1] Patent: US2014/94616, 2014, A1, . Location in patent: Paragraph 0155.
  • 3
  • [ 1227704-10-0 ]
  • [ 144-62-7 ]
  • [ 75-65-0 ]
  • [ 907606-68-2 ]
YieldReaction ConditionsOperation in experiment
81%
Stage #1: With sodium hydrogen sulfate In tert-butyl methyl ether; water for 0.5 h;
Stage #2: With dmap; sodium hydrogen sulfate; di-<i>tert</i>-butyl dicarbonate In tert-butyl methyl ether; water at 20 - 25℃; for 5 - 6 h;
A mixture of the (S)-1,2,3,4-tetrahydro-1-naphthylammonium salt prepared as in Example 3, Method 1 (81.7 g, 0.203 mol), t-butyl methyl ether (400 mL) and 5percent NaHSO4-H2O (867 mL, 0.304 mol) was stirred for 30 minutes until all solids were dissolved. The organic phase was washed with water (334 mL) then concentrated to 259 mL. t-Butyl methyl ether (334 mL) was added and the solution was concentrated again to 259 mL. The addition-concentration process was repeated twice more. After the final concentration, t-BuOH (158 mL) and dimethylaminopyridine (5.04 g, 41.3 mmol) were added. A solution of Boc2O (67.6 g, 0.31 mol) in t-butylmethyl ether (52.0 mL) was added. After stirring for 5 hours at ambient temperature, t-butyl methyl ether (158 mL) and 5percent aqueous NaHSO4-H2O (260 mL) were added and the resultant mixture was stirred. The organic phase was washed with 5percent aqueous NaCl (twice, 260 mL each). The organic phase was concentrated to 320 mL, and tetrahydrofuran (320 mL) was added. The organic phase was concentrated again to 320 mL, and tetrahydrofuran (320 mL) was added. After concentrating to 320 mL once more, methane sulfonic acid (80.1 g, 0.62 mol) was added and the solution was stirred at ambient temperature for 4.5 hours. The reaction mixture was added to a 30percent aqueous solution of K2CO3 (571 mL) and stirred. The aqueous phase was extracted with isopropyl acetate (320 mL). The combined organic phases were concentrated to 320 mL, and isopropyl acetate (320 mL) was added. The organic solution was concentrated again to 320 mL. The organic phase was washed with water (320 mL). Isopropyl acetate (320 mL) was added to the organic phase and the solution was concentrated to 192 mL. Isopropyl acetate (320 mL) was added a second time, and the organic solution was concentrated to 192 mL. A solution of oxalic acid (24.1 g, 267 mmol) in isopropyl acetate (448 mL) was added to the organic solution over 2 hours. The mixture was stirred for 2-4 hours, and the slurry was filtered. The white solids were rinsed with isopropyl acetate (100 mL) and dried at 35-40° C. under vacuum to yield 52.6 g of the title compound (85percent yield); A mixture of (S)-1,2,3,4-tetrahydro-1-naphthylammonium salt as prepared by the method of Example 3, Method 2 (148 g, 0.609 mol), t-butyl methyl ether (726 mL) and 5percent NaHSO4-H2O (1.58 L, 0.913 mol) was stirred until all of the solids had dissolved. The phases were separated and the organic phase washed with water (726 mL). The organic phase was concentrated to about 400 mL. t-Butyl methyl ether (726 mL) was added and the mixture concentrated to 590 mL. The addition of t-butyl methyl ether and concentration was repeated to give a final volume of 350 mL. Dimethylaminopyridine (8.42 g, 68.9 mmol) and t-butyl alcohol (260 mL) were added, followed by addition of a solution of Boc2O (112 g, 0.52 mol) in MTBE (88 mL) over 0.5 hour. The mixture was stirred for 5 hours at 22-25° C. A solution of 5percent sodium bisulfate in water was added and the mixture stirred for 0.5 hour. The organic phase was washed with 5percent sodium chloride (twice, 440 mL each) and concentrated to 270 mL. Tetrahydrofuran (540 mL) was added and the mixture concentrated to 270 mL; this procedure was repeated twice more to give a final volume of 270 mL. Methane sulfonic acid (67 mL) was added over 0.5 hour while maintaining a temperature of lower than 30° C. and the mixture stirred at 22-25° C. for 12 hours. The mixture was added to a 30percent aqueous solution of potassium carbonate (478 mL) while maintaining a temperature of 22-25° C. The mixture was filtered, the phases separated and the aqueous phase extracted with isopropyl acetate (twice, 540 mL each). The organic phase was concentrated to 270 mL, then twice evaporated with isopropyl acetate (540 ml) to give a final volume of 540 mL. The organic phase was washed with water (twice, 540 mL), then twice evaporated with isopropyl acetate (320 mL) to give a final volume of 320 mL. Additional isopropyl acetate (429 mL) was added followed by addition of a solution of oxalic acid (40.4 g, 0.448 mol) in t-butylmethyl ether (321 mL) over 2 hours maintaining a temperature of 22-25° C. The mixture was stirred for 3 hours at 22-25° C. then filtered. The filter cake was washed with isopropyl acetate (100 mL) and the product dried at 35-40° C. under vacuum to give the title compound as a white solid (88.4 g, 81percent).
References: [1] Patent: US2007/87973, 2007, A1, . Location in patent: Page/Page column 43-44.
  • 4
  • [ 1205676-37-4 ]
  • [ 907606-68-2 ]
References: [1] Patent: US2014/94616, 2014, A1, .
  • 5
  • [ 402960-06-9 ]
  • [ 907606-68-2 ]
References: [1] Organic Process Research and Development, 2014, vol. 18, # 10, p. 1234 - 1244.
  • 6
  • [ 24424-99-5 ]
  • [ 907606-68-2 ]
References: [1] Organic Process Research and Development, 2014, vol. 18, # 10, p. 1234 - 1244.
  • 7
  • [ 714194-68-0 ]
  • [ 144-62-7 ]
  • [ 907606-68-2 ]
References: [1] Organic Process Research and Development, 2014, vol. 18, # 10, p. 1234 - 1244.
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 907606-68-2 ]

Esters

Chemical Structure| 1147103-42-1

A202016 [1147103-42-1]

(1S,3aR,6aS)-Ethyl octahydrocyclopenta[c]pyrrole-1-carboxylate hydrochloride

Similarity: 0.86

Chemical Structure| 145064-67-1

A366414 [145064-67-1]

(S)-tert-Butyl piperidine-2-carboxylate hydrochloride

Similarity: 0.86

Chemical Structure| 74892-82-3

A606979 [74892-82-3]

(2R,4R)-Ethyl 4-methylpiperidine-2-carboxylate

Similarity: 0.84

Chemical Structure| 15862-72-3

A315397 [15862-72-3]

Ethyl pipecolinate

Similarity: 0.80

Chemical Structure| 123495-48-7

A245450 [123495-48-7]

(S)-Ethyl piperidine-2-carboxylate hydrochloride

Similarity: 0.79

Related Parent Nucleus of
[ 907606-68-2 ]

Other Aliphatic Heterocycles

Chemical Structure| 1147103-42-1

A202016 [1147103-42-1]

(1S,3aR,6aS)-Ethyl octahydrocyclopenta[c]pyrrole-1-carboxylate hydrochloride

Similarity: 0.86

Chemical Structure| 1250423-37-0

A160136 [1250423-37-0]

Ethyl 2-(2-azabicyclo[2.2.1]heptan-2-yl)acetate

Similarity: 0.74

Chemical Structure| 1205676-44-3

A128290 [1205676-44-3]

(1S,3aR,6aS)-Octahydrocyclopenta[c]pyrrole-1-carboxylic acid hydrochloride

Similarity: 0.71

Chemical Structure| 6879-01-2

A377915 [6879-01-2]

(2S,31R,7AR,8R,8aS,11S,11aS,11bR)-8-Ethyl-11-methyl-2-((2S,4S)-4-methyl-5-oxotetrahydrofuran-2-yl)dodecahydroazepino[3,2,1-hi]furo[3,2-e]indol-10(2H)-one

Similarity: 0.71

Chemical Structure| 145513-91-3

A674832 [145513-91-3]

(2R,3aS,7aS)-Octahydro-1H-indole-2-carboxylic acid

Similarity: 0.70