Home Cart Sign in  
Chemical Structure| 9006-65-9 Chemical Structure| 9006-65-9

Structure of Dimethicone
CAS No.: 9006-65-9

Chemical Structure| 9006-65-9

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Edyta Kucharska ; Berin Ok ; Anna Nowak ; Łukasz Kucharski ; Anna Muzykiewicz-Szyma´nska ; Paula Ossowicz-Rupniewska

Abstract: This study assesses ibuprofen’s permeability to different formulations and their biodegradation. Hydrogel, organogel, Eucerin ointment, silicone ointment, and zinc ointment were investigated. The objective was to comprehensively evaluate the therapeutic efficacy and environmental implications of these formulations. Diverse formulations were examined through the utilisation of Franz diffusion chambers to evaluate the in vitro permeability of both ibuprofen and ibuprofenate sodium. Moreover, biodegradation studies of the obtained formulations were carried out with activated sludge. The activity of the inoculum was confirmed by using SDS as a reference compound. The experimental settings used (carbon content and inoculum volume) were selected based on the criteria set by the OECD guidelines. Relevant parameters pertaining to the biodegradation process were estimated, including biodegradation values (%B) at specific time points, half-lives of initial compounds and API-containing formulations, and degradation phases (lag phase I; degradation phase II, and plate phase III). For comparison purposes, biodegradation studies were also carried out for the initial IBU and IBUNa compounds under the same conditions. The environmental implications of these findings underscore the need for a balanced consideration of therapeutic efficacy and environmental sustainability in pharmaceutical formulation design. This study provides valuable insights for pharmaceutical researchers, environmental scientists, and regulatory bodies involved in the development and assessment of drug formulations. The proposed method of removing NSAIDs from aquatic ecosystems is a cheaper alternative to techniques such as reverse osmosis, oxidation, UV degradation, or photolysis, which have not found practical use owing to the generation of toxic sludge or high capital and operating costs.

Keywords: permeability ; biodegradability ; ibuprofen ; nonsteroidal anti-inflammatory drug ; drug formulation

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 9006-65-9 ]

CAS No. :9006-65-9
Formula : N/A
SMILES Code : NONE
MDL No. :MFCD02321983

Safety of [ 9006-65-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P280-P301+P312-P302+P352-P305+P351+P338
 

Historical Records