Structure of 87253-62-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 87253-62-1 |
Formula : | C8H8N4O2 |
M.W : | 192.18 |
SMILES Code : | O=C(C1=NN2C(C)=CC(C)=NC2=N1)O |
MDL No. : | MFCD00462463 |
InChI Key : | LIVBNPDDJKFYDF-UHFFFAOYSA-N |
Pubchem ID : | 676511 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 14 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.25 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 47.67 |
TPSA ? Topological Polar Surface Area: Calculated from |
80.38 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.18 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.76 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.44 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.57 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.19 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.63 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.92 |
Solubility | 2.31 mg/ml ; 0.012 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.03 |
Solubility | 1.8 mg/ml ; 0.00938 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.49 |
Solubility | 6.19 mg/ml ; 0.0322 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.93 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.16 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
4 g | With hydrogenchloride; water;Inert atmosphere; | In 100ml RB flask 2-amino triazole 5-ethyl carboxylate (5gm) was taken. To it 2,4-pentandione (4.1ml) was added followed by addition of piperidine (4ml). This reaction mixture was refluxed for 3 daysunder nitrogen. Reaction mixture was cooled. Solvent from the RM was evaporated. To the residue water was added and neutralized with 6N HCl, solid precipitated. It was filtered and washed with diethyl ether and dried to give pure product as white solid (4 g, 55 %). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In N,N-dimethyl-formamide; at 20.0℃; for 4.0h;Inert atmosphere; | General procedure: In 25ml RB flask to a solution of Compound 9 (200 mg) in dry DMF (5ml), EDCI (250 mg, 1.25eq) and DMAP (130 mg,1eq) were added followed by addition of Sulfonamide (1eq). RM was stirred at RT for 4hrs. Solvent from the reaction mixture was evaporated. To the residue water was added and acidified with 6N HCl, solid precipitated out. Solid was filtered and dried. Crude solid was purified by flash chromatography eluating with 4-8% MeOH/DCM as solvent system to give pure product. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
24% | With dmap; 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride; In acetonitrile; at 20.0℃; for 12.0h;Inert atmosphere; | 5,7-Dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxylic acid (purchased from ChemBridge, http://www.chembridge.com; 75 mg, 0.37 mmol) and benzyl amine (49 mL, 0.44 mmol) were dissolved in 2 mL of acetonitrile and treated with EDC (107 mg, 0.56 mmol) and DMAP (136 mg, 1.11 mmol). The resulting solution was stirred for 12 h at room temperature. The reaction mixture was diluted with CH2Cl2, washed with 10% aqueous NaHCO3 solution (2x), water, 5% acetic acid solution (2x). The organic phase was collected, dried over sodium sulfate (Na2SO4), filtered and then concentrated in vacuo. Crude material obtained was purified by silica gel column chromatography with a 30% ethyl acetate : CH2Cl2 solvent system to give 25 mg (24%) of 11 as a white solid then recrystillized for x-ray diffraction. Mp 187-188 C; 1H NMR(300 MHz, CDCl3) delta 7.89 (bs, NH, 1H), 7.37-7.24 (m, 5H), 6.88 (s, 1H), 4.70 (d, J = 6.0 Hz, 2H), 2.85 (s, 3H), 2.66 (s, 3H). 13C NMR (126 MHz, CDCl3) delta 166.47, 159.38, 158.99, 155.12, 147.87, 137.61, 128.88, 128.08, 127.80, 112.06, 43.78, 25.34, 17.38. HRMS (EI), M+1 calcd. for C15H16N5O, 282.1349; found 282.1362. HPLC tR = 1.9 min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With sulfuric acid; at 60.0℃; for 16.0h;Inert atmosphere; | a: Methyl 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxylateTo a stirred solution of 5,7-dimethyl-[l,2,4]triazolo[l,5-a]pyrimidine-2-carboxylic acid (750mg, 4.05mmol) at 25C in methanol (100 ml) under argon was added H2S04 (0.05ml). The mixture was then stirred at 60C for 16h. TLC shows the staring material was complete. The reaction mixture was then cooled and distilled the solvent was removed. After that, water (50 ml) was added to the reaction mixture, and neutral with the sodium bi carbonate. The aqueous phase was extracted with ethyl acetate. The combined organics were washed with brine (50 ml), dried over sodium sulphate, filtered and concentrated to get the crude. The crude was purified by column chromatography via amine silica gel eluted with 40% ethyl acetate in hexane to get methyl5,7-dimethyl-[l,2,4]triazolo[l,5-a]pyrimidine-2-carboxylate as an off white solid (500mg, 60%). MS: M/Z= 207 (M+H+). |
A195366 [138624-97-2]
1-Benzyl-1H-1,2,4-triazole-3-carboxylic acid
Similarity: 0.58
A308879 [858003-28-8]
4-(3,5-Dimethyl-1H-1,2,4-triazol-1-yl)benzoic acid
Similarity: 0.57
A394666 [1368819-46-8]
4-(5-Methyl-1H-1,2,4-triazol-1-yl)benzoic acid
Similarity: 0.53
A188020 [90349-23-8]
5,7-Dimethylpyrazolo[1,5-a]pyrimidine-3-carboxylic acid
Similarity: 0.53
A178540 [50920-46-2]
1-Ethyl-5-methyl-1H-pyrazole-3-carboxylic acid
Similarity: 0.52
A364406 [114040-29-8]
Ethyl 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxylate
Similarity: 0.94
A162733 [54535-00-1]
(5,7-Dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methanol
Similarity: 0.91
A203397 [2503-56-2]
7-Hydroxy-5-methyl-1,3,4-triazaindolizine
Similarity: 0.63
A421801 [62135-58-4]
Ethyl [1,2,4]triazolo[1,5-a]pyridine-2-carboxylate
Similarity: 0.63
A188565 [24415-66-5]
7-Chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine
Similarity: 0.61