Structure of 83345-46-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 83345-46-4 |
Formula : | C14H21NO4 |
M.W : | 267.32 |
SMILES Code : | O=C(OC(C)(C)C)N[C@@H](CC1=CC=C(O)C=C1)CO |
MDL No. : | MFCD00270225 |
InChI Key : | KMVXZPOLHFZPKW-NSHDSACASA-N |
Pubchem ID : | 15934817 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 19 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.5 |
Num. rotatable bonds | 7 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 3.0 |
Molar Refractivity | 72.76 |
TPSA ? Topological Polar Surface Area: Calculated from |
78.79 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.38 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.91 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.82 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.51 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.61 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.84 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.47 |
Solubility | 0.901 mg/ml ; 0.00337 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.19 |
Solubility | 0.173 mg/ml ; 0.000649 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.06 |
Solubility | 0.234 mg/ml ; 0.000875 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.57 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.65 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
0.4 g | With lithium aluminium tetrahydride; In diethyl ether;Inert atmosphere; Reflux; | N-Boc-L-tyrosinol 4: 1?g of N-Boc-L-tyrosine (3.6?mmol) was dissolved under nitrogen in 80?mL of dry diethyl ether. Then lithium aluminium hydride (0.4?g, 0.01?mol) was added in portions. The suspension was heated to reflux overnight. After cooling to room temperature, ethyl acetate was added and the reaction mixture was poured carefully to concentrated sodium hydroxide solution while stirring. The organic layer was extracted with water and dried with sodium sulphate. 0.4?g oily material was obtained after removing the solvents. 1H NMR (400?MHz, CDCl3): delta 1.37 (9H, s), 2.69 (2H, d, J?=?6.51?Hz), 3.47 (1H, dd, J?=?5.27, 10.85?Hz), 3.57 (1H, dd, J?=?3.75, 10.85?Hz), 3.76 (1H, s), 5.06 (1H, d, J?=?7.75?Hz), 6.70 (2H, d, J?=?8.37?Hz), 6.97 (2H, d, J?=?8.37?Hz), 7.70 (1H, br s) ppm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | A solution of Boc-L-Tyrosinol (1 g, 3.74 mmol), p-toluenesulfonic acid (0.0356 g, 0.187 mmol), and dichloromethane (DCM) (7.66 mL) was added 2,2 dimethoxypropane (2.3 mL, 18.7 mmol). The resulting mixture was stirred overnight at room temperature under nitrogen. Reaction mixture was washed with sodium bicarbonate (20 mL). Organic layer was separated and washed with sodium bicarbonate (20 mL). The sodium bicarbonate layers were combined and washed with DCM (20 mL). DCM layers were combined, dried over MgSO4, filtered, and concentrated in vacuo to obtain a crude mixture that was purified by silica gel flash chromatography, using EtOAc/hexane (gradient system) to obtain product (0.87 g, 83%): 1H NMR (400 MHz, CDCL3): delta 1.42-1.68 (m, 15H), 2.57-2.63 (m, 1H), 3.00-3.14 (m, 1H), 3.74-3.80 (m, 2H), 3.91-4.05 (m, 1H), 6.77 (t, 2H, J=8.8 Hz), 7.08 (dd, 1H, J=8.0 Hz, J=16 Hz). |