Home Cart Sign in  
Chemical Structure| 78316-08-2 Chemical Structure| 78316-08-2

Structure of 78316-08-2

Chemical Structure| 78316-08-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 78316-08-2 ]

CAS No. :78316-08-2
Formula : C7H5N3O2
M.W : 163.13
SMILES Code : O=C(C1=C2C(NC=N2)=NC=C1)O
MDL No. :MFCD05723323
InChI Key :CEZJOKOKGRAPMR-UHFFFAOYSA-N
Pubchem ID :3433733

Safety of [ 78316-08-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P280-P301+P312-P302+P352-P305+P351+P338

Computational Chemistry of [ 78316-08-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 9
Fraction Csp3 0.0
Num. rotatable bonds 1
Num. H-bond acceptors 4.0
Num. H-bond donors 2.0
Molar Refractivity 40.85
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

78.87 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.19
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.28
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.66
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

-1.69
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.89
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.07

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.52
Solubility 4.96 mg/ml ; 0.0304 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.5
Solubility 5.18 mg/ml ; 0.0318 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.9
Solubility 2.04 mg/ml ; 0.0125 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-7.1 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.36

Application In Synthesis of [ 78316-08-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 78316-08-2 ]

[ 78316-08-2 ] Synthesis Path-Downstream   1~6

  • 1
  • [ 115951-72-9 ]
  • [ 78316-08-2 ]
  • 2
  • [ 27582-20-3 ]
  • [ 78316-08-2 ]
YieldReaction ConditionsOperation in experiment
40% Na2CO3 (3.3 g, 1 eq, 31.5 mmol) and water (200 ml) are added to product 7- methyl-3H-imidazo[4,5-b]pyridine x176 (4.2 g, 31.5 mmol). The reaction mixture is heated until boiled, which caused its transformation into a solution. KMnθ4 (12.5 g, 2.5 eq, 78.9 mmol) is added in small portions to the obtained boiling solution. After KMnθ4 is added completely, the reaction mixture is additionally kept at 100 0C for 1 h and cooled to 50- 60 0C. Mnθ2 is filtered off, and the residue is additionally washed with hot water (2 x 50 ml) on a filter. The obtained aqueous solution is evaporated in vacuum to a volume of 50 ml, cooled to 5 0C, and acidified with 10 % HCI to pH 2-3. The obtained suspension is kept at 5 0C for 1 h. The formed precipitate is separated by filtration, washed with ice-cold water (2 x 10 ml), and vacuum-dried (1 mm Hg) over P2O5 overnight to give 2.06 g of 3H- imidazo[4,5-b]pyridine-7-carboxylic acid x177.Yield: 40 %.LC-MS (MH+): 164.
  • 3
  • [ 67-56-1 ]
  • [ 78316-08-2 ]
  • methyl 3H-imidazo[4,5-b]pyridine-7-carboxylate [ No CAS ]
YieldReaction ConditionsOperation in experiment
80% Absolute methanol (30 ml) is added to acid x177 (2.0 g). Concentrated H2SO4 (4 ml) is added to the obtained suspension at 0 0C. The reaction mixture is refluxed under protection from the air moisture and vigorous stirring for 10 h. After 3 h the solid is EPO <DP n="135"/>completely dissolved. The next morning the reaction mixture is evaporated to half-volume in the vacuum of a rotary evaporator and neutralized under cooling with ice with aqueous ammonia to pH 8-9. The formed precipitate is quickly separated by filtration, washed with ice-cold water (2 * 30 ml), and dried over P2O5 overnight to afford 1.74 g of methyl 3H- imidazo[4,5-b]pyridine-7-carboxylate x179.Yield: 80 %.LC-MS (MH+): 257.
  • 4
  • [ 53929-59-2 ]
  • [ 78316-08-2 ]
  • 5
  • [ 6635-86-5 ]
  • [ 78316-08-2 ]
  • 6
  • [ 78316-08-2 ]
  • methyl 3-((2-(trimethylsilyl)ethoxy)methyl)-3H-imidazo[4,5-b]pyridine-7-carboxylate [ No CAS ]
 

Historical Records

Technical Information

Categories