There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 71831-21-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 71831-21-5 |
Formula : | C8H9BrO |
M.W : | 201.06 |
SMILES Code : | OCC1=CC=C(CBr)C=C1 |
MDL No. : | MFCD08275218 |
InChI Key : | RDHSYXFAOVTAEH-UHFFFAOYSA-N |
Pubchem ID : | 10330434 |
GHS Pictogram: |
![]() ![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H302-H314-H317-H400 |
Precautionary Statements: | P260-P261-P264-P270-P272-P273-P280-P301+P310+P330+P331-P303+P361+P353+P310-P304+P340+P310-P305+P351+P338+P310-P333+P313-P363-P391-P405-P501 |
Class: | 8 |
UN#: | 3261 |
Packing Group: | Ⅱ |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.25 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 45.41 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.23 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.1 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.77 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.77 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.34 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.68 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.13 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.51 |
Solubility | 0.616 mg/ml ; 0.00306 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.81 |
Solubility | 3.09 mg/ml ; 0.0154 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.49 |
Solubility | 0.0652 mg/ml ; 0.000324 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.27 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.52 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With diisobutylaluminium hydride; In tetrahydrofuran; dichloromethane; | 4-Bromomethylbenzyl alcohol To a solution of methyl 4-bromomethylbenzoate (5.73 g, 25 mmol) in dry CH2Cl2 (150 mL) cooled to -78° C. with stirring under nitrogen was added dropwise a solution of DIBAL-H (82.5 mL, 1.0 M solution in THF). Stirring was continued for 1.5 h at -78° C., and the reaction mixture was then allowed to warm to 0° C. and quenched with H2O. The organic layer was separated and the aqueous was extracted with CH2Cl2 (2*100 mL). The combined organic extracts were dried (MgSO4) and evaporated to give the desired alcohol (5.0 g, 100percent) as a white solid: 1H NMR (CDCl3) delta1.84 (br, 1H), 4.49 (s, 2H), 4.67 (s, 2H), 7.33 (d, 2H, J=8.2 Hz), 7.38 (d, 2H, J=8.2 Hz). |
100% | With diisobutylaluminium hydride; In tetrahydrofuran; dichloromethane; | 4-Bromomethylbenzyl Alcohol To a solution of methyl 4-bromomethylbenzoate (5.73 g, 25 mmol) in dry CH2Cl2 (150 mL) cooled to -78° C. with stirring under nitrogen was added dropwise a solution of DIBAL-H (82.5 mL, 1.0 M solution in THF). Stirring was continued for 1.5 h at -78° C., and the reaction mixture was then allowed to warm to 0° C. and quenched with H2O. The organic layer was separated and the aqueous was extracted with CH2Cl2 (2*100 mL). The combined organic extracts were dried (MgSO4) and evaporated to give the desired alcohol (5.0 g, 100percent) as a white solid: 1H NMR (CDCl3) delta 1.84 (br, 1H), 4.49 (s, 2H), 4.67 (s, 2H), 7.33 (d, 2H, J=8.2 Hz), 7.38 (d, 2H, J=8.2 Hz). |
100% | With diisobutylaluminium hydride; In tetrahydrofuran; dichloromethane; at -78℃; for 1.5h;Inert atmosphere; | General procedure: 4.1.57 4-Bromomethylbenzyl alcohol (14) To a solution of methyl 4-bromomethylbenzoate 13 (3.09 g, 13 mmol) in dry CH2Cl2 (80 mL) cooled to -78 °C with stirring under nitrogen was added dropwise a solution of DIBAL-H (47 mL, 1.0 M solution in THF). Stirring was continued for 1.5 h at -78 °C, and the reaction mixture was then allowed to warm to 0 °C and quenched with H2O. The organic layer was separated and the aqueous was extracted with CH2Cl2. The combined organic extracts were dried over MgSO4 and evaporated to yield quantitatively the desired alcohol as a white solid. CAS: 71831-21-5. |
90% | Example 3Preparation of intermediate (Va where n=l and R= acetyl) 4-(4-acetyl-piperazin- 1 -yl-methy lpheny Dmethano 15.5 volumes of Toluene were loaded in a glass lined vessel under N2 and cooled down to -200C +/- 2°C.In a separate vessel, 1.5 kg of methyl-4-bromo-methylbenzoate were charged portion wise while stirring under N2 at room temperature to obtain a solution (solution B).19.8 liters (3.02 eq.) of a 1 M solution DIBAL-H/Toluene under N2 were added, cooling down the solution to -200C +/- 2°C and stirring.The solution B was loaded under N2 portion wise while maintaining the temperature in the range 0-150C (< 350C) by addition over about 1 hour.Reaction was monitored by HPLC when addition was completed. The mixture was cooled down to -200C +/- 2°C under stirring.8.8 volumes (2.02 eq.) of IM acq. HCl (cooled to 5°C +/- 2°C) were added drop wise under very slow stirring and maintaining the temperature below 300C (<35°C).Stirring was stopped and phases separated at 8°C +/- 2°C. Water phase was removed.5 volumes Of H2O were then charged, maintaining the temperature at 100C +/- 2°C, very slowly stirring was done for a further 10 minutes.Stirring was stopped and phases separated at 100C +/- 2°C, then removed. Washing with water and phase separation were repeated. <n="14"/>Toluene was removed by distillation under reduced pressure maintaining solution temperature at 35°C (< 400C) to obtain a white solid with yield equal to 90percent.The above solid is dissolved in 7 volumes of dichloromethane in a vessel under N2 stirring at 25°C for about 15 minutes. In a separate vessel, 1.05 kg of N-acetyl- piperazine were dissolved in 3 volumes of dichloromethane stirring at 25°C.Sodium bicarbonate was charged portion wise to the dichloromethane solution under stirring at 23°C +/- 2°C in about 10 minutes.N-acetyl-piperazine solution was loaded to dichlorometane-bicarbonate mixture under stirring at 300C +/- 2°C. The mixture was stirred at that temperature for 15 hours, monitoring the reaction by HPLC.The reaction mixture was cooled down at 23°C +/- 2°C.2 volumes of water were added under stirring at 25°C for about 15 minutes. Stirring was stopped and the phases were separated. Organic phases were separated.Organic phases were washed with water (2 x 2 volumes) under stirring for 15 minutes at 25°C. Water phases were collected and washed (2 x 3 volumes) with dichloromethane under stirring for 15 minutes at 25°C. Organic phases were removed, collected and dried over anhydrous sodium sulfate. The solid cake was washed with 2 volumes of dichloromethaneDichloromethane solution was concentrated (about 15 volumes at 400C under vacuum), subsequently 6 volumes of ethyl acetate were added.6 volumes of solvent were removed at 65°C.The solution was cooled down to 53°C in about 1 hour under slow stirring, then to 5°C +/- 2°C in about 2.5 hours under slow stirring to obtain crystallization of the material.The mixture was filtered at 5°C and the solid cake washed with 1 volume of ethyl acetate (cooled at 5°C).A second crop of material could be obtained from mother liquors by concentration and cooling. <n="15"/>The solid was dried in vacuo in oven (30°C+/-2°C) for about 15 hours.Average yield 70percent (wt) starting from methyl-4-bromo-methylbenzoate, average purity for this step (> 97percent) on 13 batches. | |
81% | Preparation 36[4-(Bromomethyl)phenyl]methanolTo a solution of 4-bromomethyl-benzoic acid methyl ester (5 g, 21.82 mmol) in DCM (200 mL) is added DIBAL-H (1.0 M in hexane, 54.56 mL, 54.56 mmol) drop wise at -78° C. The reaction mixture is allowed to warm to room temperature and stirred for 16 hours. The reaction mixture is quenched with sodium potassium tartrate (10percent solution, 8 mL) and diluted with DCM (100 mL). The combined organic layer is washed with water (50 mL), brine (25 mL), dried over sodium sulfate, and evaporated to give the title compound as an off white solid (3.5 g, 81percent). 1H NMR (400 MHz, CDCl3) delta 7.23-7.21 (m, 2H), 7.4-7.3 (m, 2H), 4.5-4.3 (bs, 2H), 4.68 (s, 2H). | |
80% | With diisobutylaluminium hydride; In dichloromethane; at -78℃; for 1.5h;Inert atmosphere; | To a solution of methyl 4-(bromomethyl)benzoate (2.3 g, 0.01 mol) in dry DCM (80 mL) was added DIBAL- H (22 mL, 0.03 mol) at -78 °C under N2. The mixture was stirred at -78 °C for 1.5 h. The reaction mixture was quenched by careful addition of H2O (50 mL), and then extracted with DCM (100 mL X 3). The combined organic layers were dried over anhydrous sodium sulfate and concentrated to afford (4- (bromomethyl)phe |
With diisobutylaluminium hydride; In dichloromethane; at -78℃; for 5h;Inert atmosphere; | Methyl 4-(bromomethyl)benzoate (5.0 g) and MC (20 ml) were loaded in a 1 L flask in nitrogen atmosphere, followed by stirring for dissolving them. Then, 70 ml of DIBAL-H was slowly added thereto at ?78° C., followed by stifling for 5 hours. Upon completion of the reaction, the mixture was cooled down to 0° C. and distilled water was slowly added thereto, followed by extraction using MC. The extracted organic layer was dried under reduced pressure to give the target compound. (0249) 1H NMR (400 MHz, CDCl3): delta 7.42 (2H, d), 7.38 (2H, d), 4.73 (2H, s), 4.52 (2H, m). | |
With diisobutylaluminium hydride; In dichloromethane; at 0 - 20℃; for 1h; | To a solution of methyl 4-(bromomethyl)benzoate 17(4.36 mmol) in anhydrous DCM (10 mL), DIBAL-H (10.9 mmol) wasadded at 0 °C and then the solution was stirred at ambient temperaturefor 1 h. The reaction mixture was quenched with NH4Clsolution, diluted with DCM, filtered through celite bed and then thebed was washed with DCM. The organic layer was washed withbrine solution, dried over anhydrous Na2SO4, filtered and evaporatedunder reduced pressure to afford tittle compound 17a, whichwas used for the next step without further purification. Yield 75percent;White solid; 1H NMR (300 MHz, CDCl3) delta 7.32-7.45 (m, 4H), 4.71 (d,J 5.87 Hz, 2H), 4.51 (s, 2H), 1.69 (t, J 5.91 Hz, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
45.1% | With carbon tetrabromide; triphenylphosphine; In N,N-dimethyl-formamide; at 0 - 20℃; for 1h;Inert atmosphere; | (IX) Synthesis of Compound (25) (4-{(4-Fluoromethylbenzyl)(4H-1,2,4-triazol-4-yl)aminolbenzonitrile); Compound (28) was synthesized according to the scheme below.; (i) Synthesis of Compound (27) (4-Bromomethylbenzyl alcohol) (see Non-patent Literature 16 (Vassiliou, S,; Xeilari, M.; Yiotakis, A,; Grembecka, J.; Pawelczak, M.; Kafarskib, P.; Muchab, A., Bioorg. Med. Chem. 2007, 15, 3187-3200)); Under argon atmosphere, triphenylphosphine (14.2 g, 54.3 mmol) was added to a DMF (50 mL) solution of Compound (26) (5.00 g, 36.2 mmol) and carbon tetrabromide (18.0 g, 54.3 mmol) at 0 °C, and the mixture was heated up to room temperature. The mixture was stirred for 1 hour, and then water (300 mL) was added to the mixture, and the mixture was extracted with ethyl acetate (100 mL .x. 3). All the organic phases were mixed, sequentially rinsed with water (100 mL .x. 3) and a saline solution (100 mL .x. 1), dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (220 g of silica gel, n-hexane/EtOAc = 4/1) to obtain Compound (27) (colorless solid, 3.28 g, 45.1percent). TLC Rf = 0.25 (n-hexane/EtOAc = 3/1) 1H NMR (270 MHz, CDCl3) delta 1.78 (br s, 1H, OH), 4.50 (s, 2H, benzylic CH2), 4.69 (s, 2H, benzylic CH2), 7.30-7.36 (AA'BB', 2H, aromatic), 7.37-7.45 (AA'BB', 2H, aromatic). |
A123654 [74785-02-7]
(2-(Bromomethyl)phenyl)methanol
Similarity: 0.91
A114685 [149104-89-2]
(4-Bromo-3-methylphenyl)methanol
Similarity: 0.80
A306114 [27129-86-8]
1-(Bromomethyl)-3,5-dimethylbenzene
Similarity: 0.76
A123654 [74785-02-7]
(2-(Bromomethyl)phenyl)methanol
Similarity: 0.91
A114685 [149104-89-2]
(4-Bromo-3-methylphenyl)methanol
Similarity: 0.80
A306114 [27129-86-8]
1-(Bromomethyl)-3,5-dimethylbenzene
Similarity: 0.76
A123654 [74785-02-7]
(2-(Bromomethyl)phenyl)methanol
Similarity: 0.91
A114685 [149104-89-2]
(4-Bromo-3-methylphenyl)methanol
Similarity: 0.80
A136800 [68120-35-4]
(3-Bromo-4-methylphenyl)methanol
Similarity: 0.74
A123654 [74785-02-7]
(2-(Bromomethyl)phenyl)methanol
Similarity: 0.91
A306114 [27129-86-8]
1-(Bromomethyl)-3,5-dimethylbenzene
Similarity: 0.76