*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
David A Vargas ; Xinkun Ren ; Arkajyoti Sengupta ; Ledong Zhu ; Satyajit Roy ; Marc Garcia-Borràs , et al.
Abstract: Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.
Show More >
Abdelkader, Elwy H. ; Qianzhu, Haocheng ; Huber, Thomas ; Otting, Gottfried ;
Abstract: Genetic encoding of a noncanonical amino acid (ncAA) in an in vivo expression system requires an aminoacyl-tRNA synthetase that specifically recognizes the ncAA, while the ncAA must not be recognized by the canonical protein expression machinery. We succeeded in genetically encoding 7-aza-tryptophan (7AW), which is isoelectronic with tryptophan. The system is fully orthogonal to protein expression in E. coli, enabling high-yielding site-selective isotope-labeling in vivo. 7AW is readily synthesized from serine and 7-aza-indole using a tryptophan synthetase β-subunit (TrpB) mutant, affording easy access to isotope-labeled 7AW. Using labeled 7AW produced from 15N/13C-labeled serine, we produced 7AW mutants of the 25 kDa Zika virus NS2B-NS3 protease. 15N-HSQC spectra display single cross-peaks at chem. shifts near those observed for the wild-type protein labeled with 15N/13C-tryptophan, confirming the structural integrity of the protein and yielding straightforward NMR resonance assignments for site-specific probing.
Show More >
Keywords: 7-azatryptophan ; genetic encoding ; isoelectronicsubstitution ; NMR spectroscopy ; selective isotopelabeling
Show More >
A tunable synthesis of indigoids: targeting indirubin through temperature
Shriver, James A. ; Kaller, Kaylie S. ; Kinsey, Ally L. ; Wang, Katelyn R. ; Sterrenberg, Summer R. ; Van Vors, Madison K. , et al.
Abstract: The spontaneous conversion of 3-indoxyl to indigo was a well-established process used to produce indigo dyes. It was recently shown that some indoles, when reacted with molybdenum hexacarbonyl and cumyl peroxide, proceed through an indoxyl intermediate to produce significant amounts of indirubin through a competing mechanism. Modulation of this system to lower temperatures allows for careful tuning, leading to selective production of indirubins in a general process. A systematic assay of indoles show that electron deficient indoles work well when substituted at the 5 and 7 positions. In contrast, 6-substituted electron rich indoles give the best results whereas halogeno indoles work well in all cases. This process shows broad functional group tolerance for generally reactive carbonyl-containing compounds such as aldehydes and carboxylic acids.
Show More >
Purchased from AmBeed: 1006-94-6 ; 3420-02-8 ; 1670-82-2 ; 10075-50-0 ; 3189-13-7 ; 933-67-5 ; 17422-33-2 ; 17422-32-1 ; 4769-96-4 ; 271-63-6 ; 6146-52-7 ; 614-96-0 ; 15861-24-2 ; 479-41-4 ; 25235-85-2 ; 1670-81-1 ; 120-72-9 ; 1074-88-0 ; 84-40-2 ; 19201-53-7 ; 482-89-3
Show More >
CAS No. : | 271-63-6 |
Formula : | C7H6N2 |
M.W : | 118.14 |
SMILES Code : | C12=NC=CC=C1C=CN2 |
MDL No. : | MFCD00005606 |
InChI Key : | MVXVYAKCVDQRLW-UHFFFAOYSA-N |
Pubchem ID : | 9222 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
74.7% | With ethanol; sodium hydride; at 0 - 20℃; for 72h; | 1-Benzyl-3-(1H-pyrrolo[2,3-b]pyridin-3-yl)-piperidin-3-ol. (Compound 3); A 60% dispersion of NaH in mineral oil (9.5 g, 179 mmol) was slowly added to 150 ml EtOH (0 C.). This solution was added to 7-azaindole (5.3 g, 44.9 mmol) and 11.25 g (44.9 mmol) 1-benzyl-piperidin-3-one (as HCl salt). The resulting mixture was stirred for 72 hours at room temperature. Ethylacetate was added to the mixture and the organic layer was washed three times with a saturated NaHCO3 solution, dried (Na2SO4), filtered and concentrated. The resulting residue was purified by flash chromatography (diethyl ether/ethylacetate gradient (1:1 to pure ethylacetate)) to give compound 3 as an oil (10.3 g, 74.7%). 1H-NMR (400 MHz, CDCl3): delta 10.0 (bs, 1H), 8.27 (dd, J=5 Hz, 2 Hz, 1H), 8.14 (dd, J=8 Hz, 2 Hz, 1H), 7.35-7.24 (m, 6H), 7.03 (dd, J=5 Hz, 8 Hz, 1H), 3.96-3.88 (bs, 1H), 3.60 (dd, J gem=13 Hz, 2H), 3.07-3.01 (m, 1H), 2.95-2.89 (m, 1H), 2.39 (d, J=10 Hz, 1H), 2.16-1.96 (m,2H), 1.92-1.78 (m, 2H), 1.72-1.65 (m, 1H). (TLC EtOAc Rf 0.09). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
73% | With triethylamine; In acetonitrile; at 80℃; for 16h; | Example 5; N-(4-Fluoro-benzyl)-4-(pyrrolo[2,3-b]pyridine-1-sulfonyl)-benzamide; Add MeCN (2ml) to a flask under N2 containing 4- (4-Fluoro-benzylcarbamoyl)- benzenesulfonyl chloride (50mg, 0.152 mmol), 1H-pyrrolo [2,3-b] pyridine (18mg, 0.152 mmol), 4-Pyrrolidin-l-yl-pyridine (2mg, . 167 mmol), and triethylamine (17mg, 0.167 mmol). Heat reaction to 80 °C for 16 hours. Cool the solution to room temperature, remove MeCN on rotovap. Purify crude material on silica gel to give 45 mg (73percent yield) of N- (4-Fluoro-benzyl)-4- (pyrrolo [2,3-b] pyridine-1-sulfonyl)-benzamide. Mass Spectrum (m/e): 410.1 (M+). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Steps 1-3BzCI 1A7-azaindoline was sequentially treated with mCPBA (J. Org. Chem. 1980, 45, 4045), TMSCN/benzoyl chloride (Synthesis, 1992, 661) and LiOH (J. Agric. Food Chem. 1997, 45, 2345) to provide 6-cyano-7-azaindole 1A. The formation of compound 1 A is also described in the literature by alternate approaches (Synthesis 2008, 201 and Synthesis, 2008, 707). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
To a solution of commercially available 7-azaindole (5 g, 42.3 mmol) in diethyl ether (350 mL) was added m-chloro perbenzoic acid (11 g, 63.4 mmol) in portions at room temperature. The reaction mixture was stirred at room temperature for 5 h. The precipitated product was filtered off and washed with diethyl ether (50 mL). The solid was collected and dissolved in a mixture of water/acetone (50 mL/10 mL) with heating. The mixture was cooled to 5 C. and the crystallized product was filtered and air dried to afford the title compound (11.7 g, 96%).1H-NMR (400 MHz, CDCl3): delta=6.59 (d, 1H), 7.07 (dd, 1H), 7.46 (d, 1H), 7.66 (d, 1H), 8.14 (d, 1H), 12.4 (s, 1H).Step BTo a suspension of the title compound from Step A above (2 g, 6.92 mmol) in dry acetonitrile (15 mL) was added dimethylsulfate (0.885 g, 6.92 mmol). The reaction mixture was heated at 70 C. for 8 h. Then the clear solution was cooled to room temperature. The solution was distributed in three sealed tubes and cooled to 0 C. under an argon atmosphere. Then a 7 M solution of ammonia in methanol (5 mL) was added to each tube. The sealed tubes were heated at 50-60 C. for 48 h. The solvent was removed and the residue was dissolved in ethyl acetate (200 mL) and the organic phase was washed with dilute Na2CO3 solution, water, and brine. The organic phase was dried over Na2SO4. The solvent was evaporated and the crude product was purified by chromatography on silica using ethyl acetate to afford the title compound (0.5 g, 54%).1H-NMR (400 MHz, CDCl3): delta=4.33 (m, 2H), 6.35 (dd, 1H), 6.38 (d, 1H), 6.99 (dd, 1H), 7.71 (d, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
43.7% | With sodium; In water; toluene; at 100℃; for 9h; | To a mixture of 1.18g (0.01mol) of 7-azaindole in toluene (80ml) 1.47g (0.01mol) of 3-hydroxymethylindole was added and heated to boiling point, then 0.1g (0.0043mol) of Na was added. (If the reaction mixture was cloudy after heating, the azeotrope toluene-water was distilled before adding Na.) The reaction was continued for 9h at toluene's boiling point temperature with simultaneous distilling of secreting water. Next 3ml of methanol was added. To the cooled mixture 50ml of water was added and left for several hours at 4C. The obtained crude solid was separated yielding 1.52g (61.5%). After crystallization from ethanol/water (3:2) 1.08g of beige crystals was obtained (yield 43.7%). M.p. 164.0-164.3C. - IR (nujol): nu=3380 (N-H), 3100-3000, 3000-2800, 1630, 1600, 1480, 1420, 1330 (C-N) cm-1. 1H NMR (299.87MHz, DMSO-d6): delta=4.159 (s, 2H, 10-H), 6.916 (t, J1=1.2MHz, J2=7.2Hz, 1H, 6-H), 7.031 (t, J1=1.2Hz, J2=7.2Hz, 1H, 7-H), 7.108 (dd, J1=7.8Hz, J2=5.1Hz, 1H, 6?-H), 7.187 (s, J=3.2Hz, 1H, 2-H), 7.316 (d, J1=0.9Hz, J2=7.8Hz, 1H, 8-H), 7.377 (bs, 1H, 2?-H), 7.510 (dd, J1=1Hz, J2=7.8Hz, 1H, 5-H), 8.096 (d, J1=7.8Hz, J2=0.9Hz, 1H, 5?-H), 8.227 (t, J1=1.5Hz, J2=5.1Hz, 1H, 6?H), 10.758 (s, 1H, 1-NH), 11.649 (s, 1H, 1?-NH). 13C NMR (75.40MHz, DMSO-d6): delta=20.66 (10-C), 111.39 (8-C), 113.15 (3-C), 114.57 (3?-C), 114.71 (6?-C), 118.16 (6-C), 118.51 (5-C), 120.87 (7-C), 122.03 (4?-C), 122.98 (2-C), 124.80 (2?-C), 126.94 (4?-C), 130.96 (5?-C), 136.38 (9-C), 138.05 (7?-C) ppm. C16H13N3 (247.29): calcd. C 77.71, H 5.30, N 16.99: found C 77.70, H 5.38, N 16.94. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
78% | General procedure: 7-Azaindole (6) (177 mg, 0.0015 mol) was dissolved in dry THF (10 mL) and cooled to 0 C in a salt-ice bath. To this was added sodium hydride (72 mg, 0.003 mol) and the temperature slowly raised to 40 C. The reaction mixture was stirred for 3 h under an inert atmosphere. After complete disappearance of the compound 6, the reaction mixture was cooled to room temperature and 4-iodophenylsulfonylchloride (8a) (302 mg, 0.001 mol) was added and then the reaction mixture was stirred at 40 C for 4 h. Reaction progress was monitored by TLC using n-hexane:ethyl acetate (3:7) as mobile phase. The reaction mixture was filtered to remove the NaCl salt and the filtrate was concentrated in a rota-evaporator. The crude product was partitioned between ethyl acetate and water. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The crude product thus obtained was purified by column chromatography using n-hexane:ethyl acetate (2:1). The product obtained was recrystallized from ethanol to give the pure product (9a). Similar procedures were adopted for the synthesis of the remaining compounds (9b-l). |
Tags: 7-Azaindole | Other Aromatic Heterocycles | Heterocyclic Building Blocks | 271-63-6
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL